

Search for SUSY Higgs bosons at Dzero

Boris Tuchming – Irfu/Spp CEA Saclay

Outline : • Introduction

- bbb

• ττ

D0France LPNHE -may 2011

Boris Tuchming - MSSM Higgs at D0

SUSY Higgs

- 2 parameters at tree level : $(M_A, tan(\beta))$
 - $tan\beta = v2/v1$ ratio of vev's
- At large $tan\beta$:
 - 2 neutral are ~degenerated in mass
 - Region of particular interest $tan\beta \sim M_{t}/M_{b} \sim 30$

SUSY Higgs search at large tan β

b

g

lrfu

bbb at large tan β

- Multijet signature:
 - → ≥3 jets pT>20, 25 GeV¹₃₇
 - 3 b-tags
 - di-jet M_{bb} mass peak
 - multi-jet triggers

Historic:

- PRL 95, 151801 (2005) : 260 fb-1
- Large involvement of Saclay group: 2003-2008.
 - PRL 95, 151801 (2005) 1fb-1
 - Infrastructure and code still in use.
- PLB 698, 97 (2011) 5.2fb-1

Challenge: model the multi-jet (HF) background

Irfu

- Large multi-jet background, hard to understand and model with data.
- backgrounds not only bbj, bbbb BUT ALSO odd number of visible heavy flavor (just like signal) bjj, bbc, bbb,....

- Main background for final selection is found to be bbb very similar to the signal final state.
- backgrounds are not predicted accurrately by MC
 - compute DATA/MC correction
 - large systematics

D⁄0 L~5.2 fb-1

background analysis, obtained by fitting data to different tagging efficiency.

3 tag sample:	bbb	~47%
· ·	bbj	~32%
	bbc+b	cc ~17%
	ccj	~2%
	jjx	~2%

Searching for a bbb signal

Strategy

- Build likelihood based on kinematics
- Look for excess in di-jet mass spectrum

sensitivity around tan $\beta \sim 45$

« excess » gave rise to many x-checks
~ 2sigma at 120 and 210 GeV

CDF also has excesses @140 GeV

But not plan for combination yet !!

lrfu

Prospects bbb

Irfu CCCC saclay

- For summer 2011
 - → includes more data $5.2 \rightarrow 7.2$ fb-1
 - MVA tagger = +20% signal
 - use NN to pick best jet pairing and enhance mass peak
- Future:
 - would benefit from improved di-jet resolution
 - But systematics are a dominant factor.

tau channel challenges

Relatively soft decay products:

- Energy shared among multiple decay products
- neutrino(s) taking away energy

Large branching ratio to hadrons Need to reconstruct hadronic final states

- Large jet background
- Dedicated energy scale
- Three dedicated NN for τ_h identification
 - typically ε~65% f~2.5%
- τ+τ- signatures
 - at least one leptonic tau
 - « high » pt isolated lepton
 - The other is hadronic or leptonic

W+jets, QCD instrumental background

Jet-Background

rfu

tau channel challenges

Relatively soft decay products:

- Energy shared among multiple decay products
- neutrino(s) taking away energy

Jet-Background

Large branching ratio to hadrons

- Need to reconstruct hadronic final states
- Large jet background
- Dedicated energy scale
- Three dedicated NN for $\tau_{\rm h}$ identification
 - typically ε~65% f~2.5%

 τ + τ - signatures

- at least one leptonic tau
 - * « high » pt isolated lepton
- The other is hadronic or leptonic
- W+jets, QCD instrumental background
 - control samples from: same-sign/opposit sign, Isolated/non-isolated, high NNτ/low NNτ, high M_τ

lrfu

ττ b channels

field [Events]

Look fo two taus + 1 b-jet

- 2 channels $\tau_h \tau_{\mu}$, $\tau_h \tau_e$
- Employ multivariate discriminant:

Historic:

Phys. Rev. Lett. 102, 051804 (2009) 0.33 fb⁻¹ Phys. Rev. Lett. 104, 151801 (2010), 2.7 fb⁻¹ Saclay activities:

- b $\tau_{\mu} \tau_{h}$ analysis preliminary 5.2 fb⁻¹,
- colab review for summer publication 7.2 fb⁻¹

lrfu

ττ b channels results

- Much bigger improvments than just adding more data
 - specific discriminants against different backgrounds
 - inclusive trigger
 - → Dominant Z+b background constrained with $Z \rightarrow \mu\mu$ data

lrfu

ττ channels

- Look for τ τ
 - 3 analysis $\tau_e \tau_h$, $\tau_\mu \tau_h$, $\tau_e \tau_\mu$

Historic:

Phys. Rev. Lett. 97, 121802 (2006) 0.35 fb⁻¹ Phys. Rev. Lett. 101, 071804 (2008) 1 fb⁻¹ Preliminary : results 1.2-2 fb⁻¹ since summer 08

ττ results

lrfu

 \tilde{c}

MSSM Constraints market

Previous combinations

sensitive to tanb~30

superseded by new D0 analysis this summer

- bτ_uτ_h (tanβ~20-25)
- $\tau_e \tau_\mu + \tau_h \tau_\mu$ (tan β ~30)

Would be nice to combine these two channels

 But showstopper : need to master overlap, (in particular b-tag jets) but different cafe versions

lrfu

 \mathbf{e}

Conclusion

- Iot of results from D0 for MSSM Higgs and large contributions from D0 France
 - bbb sensitivity $\tan\beta \sim 45$ for 5.2 fb⁻¹
 - $\tau\tau b$ sensitivity tan β ~20-25 for 7.3 fb⁻¹
 - $\tau\tau$ sensitivity tan β ~30 for 5.4 fb⁻¹
 - If we combine everything we could reach ~20
- No updates from CDF for a while !
- LHC has a higher cross-sections and much favorable S/B for ττ
 - Already reached tanβ~25 with 36 pb⁻¹
 - We can expect $\tan\beta \sim 15$ this summer
- D0 management is considering that after this summer it won't be worthwhile to update tau channels but still worthwhile to do bbb

lrfu

Support slides

Charged Higgs

MSSM Benchmark

Irfu CEO saclay

- 2 parameters, $(M_A, tan(\beta))$ to describe SUSY Higgs sector at Leading Order
- hbb vertex receive large corrections from sbottom-gluino and stop-higgsino loop
- Five additional parameters due to radiative correction
 - M_{SSY} (parameterizes squark, gaugino masses)
 - X_t (related to the trilinear coupling $A_t \rightarrow$ stop mixing)
 - M₂ (gaugino mass term)
 - μ (Higgs mass parameter)
 - M_{guiro} (comes in via loops)
- Two common benchmarks
 - Max-mixing Higgs boson mass
 - $\mathbf{m}_{\!\scriptscriptstyle h}$ close to max possible value

for a given $\mbox{tan}\beta$

No-mixing - vanishing mixing in
stop sector → small mass
for h

	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
x,	2 TeV	0
M ₂	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

MSSM prospects

D0France LPNHE -may 2011

Including SM searches

Boris Tuchming - MSSM Higgs at D0

b jets tagging: essential for search at low mass

ε=50% for 2% mis-tag at η<1 ε=60% for 1.5% mis-tag Pt=50 GeV (loose tag)

Eg: CDF 2rd vtx tag

Eg: DO NN (2006)

LHC & Tevatron Compared (I)

lrfu

ceol saclay