New dataset studied in WH

Dikai Li LPNHE

May 31st 2011 D0 France meeting

Outline

- 1. Runllb1-2-3-4 data comparison
- 2. Trigger epoch dependence
- 3. New and default Jet treatment
- 4. Alpgen RW comparison

1. Runllb1-2-3-4 data comparison

Configuration

Vjet CAFe v05-05-12d

- -switched to latest dq_defs v2010-12-25
- –updated vjets_cafe/lumi-dq with head version
- -caf trigger/parameters/runvstiglistX100.txt by
- caf_trigger/parameters/mkruntrigvlist.py

SAM definition

- CSG_CAF_EMinclusive_PASS6_p21.20.00_p20.18.02b_fix
- CSG_CAF_EMinclusive_PASS6_p21.20.00_p20.18.02b_winter2011
- -CSG_CAF_Muoninclusive_PASS6_p21.20.00_p20.18.02b_fix
- -CSG_CAF_Muoninclusive_PASS6_p21.20.00_p20.18.02b_winter2011

Selection

Muon: CC: Point1, EC: Point2, pT > 15 GeV

Electron: CC: Point1, EC: Point2, pT > 15 GeV W transverse mass >60 GeV

MET: MET>15 GeV

Jet: pT>20 GeV, |eta|<2.5 vertex confirmed jet

NJets==2

|PVz| < 60 cm

No other cuts (triangle cut, HT)

No btagging part.

Compare distributions normalized by luminosity: Run2b1 vs Run2b2 Run2b2 vs Run2b3 Run2b3 vs Run2b4 Run2b4 vs Run2b1

Using the following integrated luminosities: Run2b1: 1.2 fb-1 Run2b2: 3.0 fb-1 Run2b3: 2.0 fb-1 Run2b4: 0.8 fb-1

Muon channel

Lepton pT

IIb2 and IIb3 is less efficient compared to IIb1. IIb4 seems to recover efficiency.

Electron channel

Lepton pT

IIb2 and IIb3 is less efficient compared to IIb1. IIb4 seems to recover efficiency.

Muon channel

<u>Lepton η</u>

IIb4 case, it's difficult to identify which part is recovered.

Electron channel

<u>Lepton n</u>

Muon channel

Missing ET

Similar strange behavior in electron channel

Electron channel

Missing ET

Muon channel

W transverse mass

IIb2 and IIb3 is less efficient compared to IIb1. IIb4 seems to recover efficiency.

W transverse mass

Electron channel

Muon channel

Missing ET significance

Similar behavior like in electron channel

Missing ET significance

Electron channel

Muon channel

Leading jet n

Electron channel

<u>Leading jet n</u>

Muon channel

pT of di-jet system

Electron channel

pT of di-jet system

Since the trigger level changes among Run period, we need to check whether trigger epoch affect the data set or not

2 Trigger epoch dependence

Compare distributions normalized by luminosity/normarlized to 1:

- Trigger 1: v15.0-v15.9 (221993-240743)
- Trigger 2: v16.0-v16.5 (240762-257675)
- Trigger 3: v16.5- (257684-)
- Trigger 3-IIb3: (257684- 262856)
- Trigger 3-IIb4: (264071-)

Using the following integrated luminosities: Trigger 1: 1.6 fb-1 Trigger 2: 3.0 fb-1 Trigger 3: 2.3 fb-1 Trigger 3-IIb3: 2.5 fb-1 Trigger 3-IIb4: 0.8 fb¹

Lepton pT

<u>Lepton η</u>

Missing ET

W transverse mass

Missing ET significance

Leading jet n

pT of di-jet system

3 Comparison of default/<u>new Jet treatment</u> Configuration

- Data set: IIb2+3 data, IIb2 MC vjets: v05-05-12d (checked codes are identical between v05-05-12e.) selection: Electron: pT>15 GeV, Point1(Point2) for CC(EC) MET> 20 GeV WTrMass>60 GeV (in order to kill Multi-jet background) Jet: VCJet pT>20 GeV, |eta|<2.5, Njet>= 2 (2jet inclusive) Additional correction on top of vjets

 Lepton eta correction (from WH pub.)
 NO Wpt-DeltaR correction (from WH pub.)
 - NO jet eta reweighting.

	Expe	erimental scale factors2 jet inclu	usive	
	Multijet (tight):	Multi-jet scale factor:	Multijet (tight):	
default	0.71±0.18	trial version is higher than	0.74±0.17 W+iets (tight):	tria
	W+jets (tight):	 Wjet scale factor: 	1.07±0.02	
	1.09±0.02	trial version is lower than		27
		default one.		

default

The $\chi 2$ of MET: 0.000 \rightarrow 0.274

KS: 0.002, χ² _______Data (Expected) : 0.274

> Int.:3932.9 ± 90.8 W+lf

> Int.:4654.3 ± 24.7

Int.:1663.9 ± 11.7

Int.:605.9 ± 8.3 Z+c

Int.:115.7 ± 1.9 Z+b

Int.: 75.9 ± 0.9

Int.:1535.5 ± 11.3 single-top

Int.:1213.6 ± 5.0 WH, m[115GeV/c ²] (x500)

Int.: 10.2 ± 0.1 ZH, m[115GeV/c ²] (x500)

> χ²=0.18 μ=0.33 σ=1.11

(data-mc)/ $\sigma_{\rm data}$

Int.:225.1± 1.2 VV

Int.: 0.9 ± 0.0

KS: 0.000, χ² _____ Data (Expected)

> Int.:3932.9 ± 90.8 W+If

Int.:35681.7 ± 75.1

Int.:1663.9 ± 11.7

Z+lf Int.:605.9 ± 8.3

Int.:115.7 ± 1.9 Z+b

Int.: 75.9 ± 0.9

Int.:1535.5 ± 11.3 single-top Int.:225.1± 1.2 VV

Int.: 0.9 \pm 0.0

-2 -1

6

28

Int.:1213.6 \pm 5.0 WH, m[115GeV/c 2] (x500) Int.: 10.2 \pm 0.1 ZH, m[115GeV/c 2] (x500)

χ²=0.02

1 2 3

(data-mc)/ $\sigma_{\rm data}$

μ=-0.56 σ=2.72

W+c Int.:4654.3 ± 24.7 W+b

Z+c

tī

Int.:49668 (49704.6 ±121.9) Multijet

W+b

Z+If

tī

Int.:35681.6 ± 75.1 W+c

DØ Runllb2, internal

S/B: 2e-04, SNB: 0.050

Int.:49668 (49704.6 ±121.9) Multijet

V+2 jets, pre-tag

30

40

V+2 jets, pre-tag

60

50

70

80

DØ Runlib2, internal

S/B: 2e-04, SNB: 0.050

5

 E_{T}^{miss} significance

90

ν p_T, GeV/c

100

-2 -1

default

trial

4 Alpgen RW comparison Configuration

- EPS
- New jet treatment
- Electron:

2jet inclusive skim with MET>60 GeV

• Muon:

2jet inclusive skim with MET>60 GeV

Alpgen setting:				
corr.jet.eta.horns:	none			
corr.alpgen.lep.eta:	Pub2010			
corr.alpgen.jet.eta:	none			
corr.alpgen.lnu.pt:	none			
corr.alpgen.j12.dr:	none			
corr.alpgen.lnujj.pt				
corr.alpgen.ule:	Pub2010			
corr.alpgen.scale:	Pub2010			
corr.alpgen.mlm:	Pub2010			

Calculate:

 $\frac{Data - (Multijet + ttbar + single top + di - boson)}{(W + Jet) + (Z + Jet)}$

For a perfect detector simulator, after applied the Alpgen correction, this ratio should be flat. And this ratio helps checking whether the current Alpgen correction consistent in each data set, and in each lepton channel.

IIb1 & IIb2, EM & MU channel consistent to each other, so we can combine the alpgen corrections.

Summary

- 1. Runllb4 seems to recovery efficiency, and shows strange behavior in MET.
- 2. Runllb4's strange behavior has no trigger epoch dependence.
- 3. New jet treatment gives better MC-Data agreement.
- 4. Alpgen correction seems good, and it's proper to combine IIb1 & IIb2, EM and MU.

BACKUP

Muon channel

2nd Leading jet n

2nd Leading jet n

Electron channel

Muon channel

Leading jet detector n

Electron channel

<u>Leading jet detector n</u>

Muon channel

2nd Leading jet detector n

Electron channel

2nd Leading jet detector η

<u>Lepton detector n</u>

Lepton Qxn

<u>Lepton Φ</u>

<u>ΨΔΦ</u>

<u>W pT</u>

Leading jet pT

2nd Leading jet pT

2nd Leading jet n

Leading jet detector n

<u>normalized by luminosity</u>d Leading jet detector n

<u>Leading jet Φ</u>

<u>2nd Leading jet Φ</u>

Di-jet sum pT

Di-jet sum pz

<u>ΔΦ between di-jet</u>

<u>Δη between di-jet</u>

<u>ΔR between di-jet</u>

Di-jet mass

