

Status of the $ZH \rightarrow IIbb$ search

E. Nagy CPPM/Fermilab

for the zhllbb Team

S.B. Beri, S. Caughron, M.-C. Cousinou, S. Desai, S. Dutt, M. Mulhearn, E. Nagy, H. Nguyen, L. Welty-Rieger, T. Yasuda

Run2a data not reanalyzed – added to the limit from the publication $ExpLim_{Run2a}/ExpLim_{All} \sim 3$, sqrt(8/1) = 2.8In the following we detail the analysis of the Run2b(1,2,3,4) data

E. Nagy - D0-France 30th May 2011

Data selection (most salient features)*

```
Primary Vertex (PV) > 2 tracks |z_{PV}| < 60 cm
Leptons (2 isolated same flavor)
   e^+e^- CC(P0)+CC(P0)/EC(P0.5)
                                             p<sub>⊤</sub>>15 GeV
   ee_{ICR} ICR(NN\tau>0.7) + CC(P0)/EC<sub>s</sub>(P0) p<sub>T</sub>>15 GeV
   \mu^+\mu^- LooseNCV w/ matched central track p_T > 15(10) GeV |\eta_d| < 1.5(2.0)
   \mu\mu_{trk} 1\mu (|\eta_d| < 1.6) + 1 isolated track
                                                   p_{T}>20 \text{ GeV } |\eta_{d}| < 2.0
7
  60 < M_{\parallel} < 150 \text{ GeV} \Delta z(PV,I) < 1 \text{ cm}
  Z \rightarrow \mu\mu: I(\mu_1)I(\mu_{2.trk}) < 0.03 (0.01) opposite charge
Jets
  > 1 JCCB (JESmuon) vertex confirmed (VC) p_T>20(15) GeV |\eta_d| < 2.0
b-jets (MVA direct tagging)
 taggable jets
 DT: MegaTight+L3 ST: MegaTight+.not.L3
```

(*) vjets_cafe v05-06-07 as of May 24th 2011 used new jet treatment of T. Guillemin used

Background

SM

 $Z/\gamma^* \rightarrow ee/\mu\mu + nqq+(bb,cc)$ WZ/ZZ/WWtt

Instrumental (MultiJet)

e+e-

 ee_{ICR}

 $\mu^+\mu^-$

 $\mu\mu_{trk}$

Simulated by MC

Alpgen + Pythia Pythia Alpgen + Pythia Simulated by data Invert isolation+shower shape and reweight $NN\tau < 0.4$ $I(\mu_1)I(\mu_2) > 0.03$ Select same charge pair Size determined from the M_{\parallel} distribution (40 < M_{\parallel} < 200 GeV)

Signal

 $Z(\rightarrow ee/\mu\mu/\tau\tau)H(\rightarrow bb/cc/\tau\tau)$

Simulated by Pythia

Treatment of the MC samples

Overlayed zbias events

Epoch dependent simulation: Run2b1 p20.09.02(03), Run2b2(34) p20.15.04 Events reconstructed and selected as data Applied efficiency corrections to simulation

Trigger (ee_{ICR},µµ,µ_{trk})

Scale factors (object reconstruction, identification, VC, taggability, b-tag) Reweighting/smearing (luminosity, PV, lepton/jets E/ η , p_T^Z) Cross sections normalized by *K*-factors to N(N)LO values

Background normalization

common fit of MJ, efficiencies to data including all channels at pretag

$$\chi^{2} = \sum_{i} \sum_{j} \sum_{m} \left[D_{m}^{ij} - \alpha^{ij} Q_{m}^{ij} - k_{L} k_{\varepsilon}^{i} (k_{Z}^{j} Z_{m}^{ij} + O_{m}^{ij}) \right]^{2} / D_{m}^{ij} + \sum_{c} (k_{X} - 1)^{2} / \sigma_{X}^{2}$$

i: channels, *j*: jet multiplicity, *m*: M_{II} bin *D*: data, *Q/Z/O*: MJ/Z/Other backgrounds *k*: luminosity, efficiency and cross section scale factors

The departure of k from1 is a measure of systematic errors in the modeling

E. Nagy - D0-France 30th May 2011

Spring'11 plots

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/archive/analysis_v3.2/preselection/zhccccbb_run2b234/2jet_masscut/

E. Nagy - D0-France 30th May 2011

EPS'11 plots cccc run2b234

http://www-clued0.fnal.gov/~lwelty/d0_private/summer_2011/vjets_050607_p2122/summer_2011_results/nominal_newvjetrw_newicrrw/control_plots/run2b234/cccc/2jet_masscut/

30th May 2011

Modeling issues

Spring'11 plots mumu run2b234

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/archive/analysis_v3.2/preselection/zhmumubb_run2b234/2jet_masscut/

EPS'11 plots mumu run2b234

http://clued0.fnal.gov/~sun786/d0_private/run2b234_incl_newtrig_treatment/2jet_masscut/

E. Nagy - D0-France 30th May 2011

Cut flow tables

Inclusive: $40 < M_{\parallel} < 200 \text{ GeV}$ 2j pretag: 2j + 60 < $M_{\parallel} < 150 \text{ GeV}$ ST, DT: taggability and direct b-tags

runzbz34	exr

data	inclusive	0j 1070.43	lj 12587	2j-multijet 2047	2j-pretag	ST	DT 25
bla	121407	1071 27	10200	2604 21	2441.05	05 2522	20 1701
Maltitut	131497	10/15/	12392	050 204	3441.20	90.0000	0.570514
Multijet	0928.05	5213.1	8/1.43/	202.324	120.313	3.11070	0.570514
Z_{jj}	121460	100353	10797.3	2926.2	2726.08	10.6169	0.621093
$Zb\bar{b}$	825.278	357.901	199.13	176.834	165.793	44.8949	16.9975
Zcē	2251.36	1122.25	485.326	393.22	365.232	27.93	4.63486
ZZ	41.4038	11.9673	8.4564	19.4503	18.2897	1.61815	1.13408
WZ	58.1131	18.239	12.7474	24.4414	23.0389	1.01316	0.0877252
WW	59.0357	44.3807	8.15415	3.09917	2.0952	0.0395589	0.0190427
tī	35.4079	0.511756	5.9724	28.7442	20.4231	6.13493	6.10282
ZH(115)	1.39202	0.109741	0.246742	1.01272	0.962371	0.267017	0.24536

run2b1 mumu

data	inclusive 95394	0j 73098	1j 10914	2j-multijet 4007	2j-pretag 3682	ST 84	DT 36
all bkg	95351 ± 61	72764 ± 49	10759 ± 17	3891.1 ± 9.8	3594.0 ± 7.8	102.87 ± 0.91	39.26 ± 0.26
Multijet	1398 ± 32	1041 ± 32	222.7 ± 5.6	55.23 ± 0.65	15.04 ± 0.34	1.91 ± 0.12	1.33 ± 0.10
Zjj	90955 ± 52	70544 ± 38	9840 ± 15	3103.5 ± 9.6	2909.8 ± 7.6	8.76 ± 0.27	0.684 ± 0.098
Zbb	772.0 ± 1.8	276.16 ± 0.63	193.42 ± 0.52	199.3 ± 1.4	187.13 ± 0.77	51.38 ± 0.45	20.41 ± 0.17
Zcē	2012.4 ± 3.1	834.7 ± 1.7	465.3 ± 1.4	436.1 ± 1.4	404.5 ± 1.3	29.42 ± 0.49	4.909 ± 0.073
ZZ	44.04 ± 0.20	10.754 ± 0.096	8.612 ± 0.084	22.65 ± 0.15	21.50 ± 0.14	1.856 ± 0.043	1.455 ± 0.033
WZ	54.17 ± 0.43	14.64 ± 0.16	12.28 ± 0.14	24.27 ± 0.36	23.20 ± 0.36	1.042 ± 0.031	0.144 ± 0.013
WW	63.97 ± 0.58	41.75 ± 0.36	9.49 ± 0.17	7.28 ± 0.40	4.65 ± 0.39	0.161 ± 0.022	0.0272 ± 0.0079
tī	51.78 ± 0.44	0.596 ± 0.045	7.92 ± 0.12	42.91 ± 0.41	28.19 ± 0.38	8.34 ± 0.54	10.31 ± 0.11
ZH(115)	1.640 ± 0.010	0.1362 ± 0.0033	0.2770 ± 0.0033	1.1938 ± 0.0090	1.1518 ± 0.0089	0.3214 ± 0.0047	0.3611 ± 0.0058

run2b2 mumu

data	inclusive 443411	0j 334120	1j 51282	2 <i>j</i> -multijet 19382	2j-pretag 17856	ST 458	DT 173
all bkg Multijet	439490 ± 318 9421 ± 90	332956 ± 291 7707 ± 89	50988 ± 88 1012 ± 11	19196 ± 46 301.9 ± 1.6	17760 ± 45 86.26 ± 0.85	472.8 ± 3.7 9.69 ± 0.29	$\begin{array}{c} 180.0 \pm 1.9 \\ 6.96 \pm 0.24 \end{array}$
Zjj Zbb	$\begin{array}{c} 416432 \pm 304 \\ 3525.3 \pm 7.0 \end{array}$	319947 ± 277 1244.0 ± 4.0	46832 ± 87 875.4 ± 3.3	15385 ± 45 958.1 ± 4.0	14455 ± 44 905.5 ± 3.9	$\begin{array}{c} 41.0 \pm 1.3 \\ 235.5 \pm 2.3 \end{array}$	2.19 ± 0.18 94.1 ± 1.2
Zcē ZZ	9175 ± 16 192.62 ± 0.74	$\begin{array}{c} 3776.3 \pm 9.9 \\ 42.62 \pm 0.39 \end{array}$	2110.0 ± 7.2 35.75 ± 0.29	$\begin{array}{c} 2102.2 \pm 8.4 \\ 105.69 \pm 0.54 \end{array}$	$\begin{array}{c} 1955.1 \pm 7.9 \\ 100.61 \pm 0.53 \end{array}$	$\begin{array}{c} 135.5 \pm 2.2 \\ 8.54 \pm 0.19 \end{array}$	24.97 ± 0.79 6.92 ± 0.16
WZ WW	230.4 ± 1.2 283.0 ± 2.3	57.48 ± 0.56 180.6 ± 1.8	$\begin{array}{c} 48.54 \pm 0.51 \\ 43.81 \pm 0.89 \end{array}$	$\begin{array}{c} 112.52 \pm 0.84 \\ 33.70 \pm 0.86 \end{array}$	$\begin{array}{c} 107.56 \pm 0.82 \\ 20.38 \pm 0.66 \end{array}$	5.04 ± 0.19 0.83 ± 0.15	$\begin{array}{c} 0.731 \pm 0.074 \\ 0.164 \pm 0.069 \end{array}$
tř ZH(115)	$\begin{array}{c} 230.3 \pm 2.7 \\ 7.214 \pm 0.042 \end{array}$	$\begin{array}{c} 2.17 \pm 0.39 \\ 0.3882 \pm 0.0059 \end{array}$	$\begin{array}{c} 30.34 \pm 0.94 \\ 1.087 \pm 0.015 \end{array}$	$\begin{array}{c} 196.6 \pm 2.5 \\ 5.633 \pm 0.039 \end{array}$	$\begin{array}{c} 129.8 \pm 2.0 \\ 5.429 \pm 0.038 \end{array}$	$\begin{array}{c} 36.7 \pm 1.2 \\ 1.471 \pm 0.022 \end{array}$	$\begin{array}{c} 44.0 \pm 1.2 \\ 1.640 \pm 0.022 \end{array}$

k_Z^2 values

	standalone	err	discrepancy	pull
Combined	0.994	0.005	n/a	n/a
zhccccbb_run2b1	0.953	0.028	-4.1%	-1.48
zhccccbb_run2b234	0.990	0.013	-0.4%	-0.29
zhccecbb_run2b1	1.045	0.036	5.1%	1.42
zhccecbb_run2b234	0.978	0.016	-1.6%	-1.01
zheicrbb_run2b1	0.894	0.039	-10.0%	-2.55
zheicrbb_run2b234	0.993	0.018	-0.1%	-0.07
zhmumubb_run2b1	0.953	0.017	-4.2%	-2.46
zhmumubb_run2b234	1.008	0.008	1.4%	1.77
zhmutrkbb_run2b1	0.941	0.049	-5.3%	-1.08
zhmutrkbb_run2b234	1.059	0.023	6.6%	2.84

Leptons EPS'11 plots

Combined all statistics (p^T_{i2} >20 GeV)

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/latest_spring2011/preselection/all/2jet_masscut/

E. Nagy - D0-France 30th May 2011

Combined all statistics (p^T_{i2} >20 GeV)

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/latest_spring2011/preselection/all/2jet_masscut/

EPS'11 plots

Jets

E. Nagy - D0-France 30th May 2011

Jets EPS'11 plots

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/latest_spring2011/preselection/all/2jet_masscut/

E. Nagy - D0-France 30th May 2011

Leptons+Jets

EPS'11 plots

Combined all statistics (p^T_{i2} >20 GeV)

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/latest_spring2011/preselection/all/2jet_masscut/

E. Nagy - D0-France 30th May 2011

Kinematical fit

Recalculates the 2 lepton's and 2(3) jet's 3-momenta in the $Z(\rightarrow II)H(\rightarrow bb)(+I/FSR)$ hypothesis Constraints: measured angle and energy(momentum) errors for jets transfer functions are used di-lepton mass distribution (BW(Γ_Z)+Gaussian) $\Sigma p_x \sim \Sigma p_y \sim 0 \pm 7 \text{ GeV}$ Fitted variables: improves bb mass resolution discriminates background with large MET used in final discrimination (RF)

E. Nagy - D0-France 30th May 2011

Final discriminant: MVA – Random Forest (200 decision trees)

Input variables: randomly chosen 10 out of the 19 variables Jets: $M_{bb}, M_{bb}^{f}, p_{T}^{b1}, p_{T}^{b1f}, p_{T}^{b2}, p_{T}^{b2f}, p_{T}^{bb}, \Delta \Phi(b_{1}, b_{2}), \Delta \eta(b_{1}, b_{2})$ Z: $p_{T}^{Z}, \Delta \Phi(I_{1}, I_{2}), \Delta \eta(I_{1}, I_{2}), coll(I_{1}, I_{2}), \Delta \Phi(Z, bb)$ topological: $cos\theta^{*}$, M(Ilbb), $H_{T}(Ilbb), M(\Sigma j_{i}), pT(\Sigma j_{i})$ Training: each mass point, ST, DT separately, all channels together, Run2b1 For now (group review), training for ICHEP'10 is used For EB review, new training will be performed Application: each mass points, each channels, each epoch, ST, DT each shape dependent systematics

Systematic errors

	Flat s	ystei	matic	S		
	signal qcd	zjj	zbb	ZCC	diB	ttbar
MJ norm	х					
k² _z (stat)		Х	Х	Х		
Δ _{norm} (discrep)	х	х	х	х	х	Х
k ^o z fit	х				Х	Х
Run2a/Run2b	х				Х	Х
σ(Z+HF)			Х	Х		
σ(diB)					Х	
σ(tt)						х
σ(VH)	х					
PDF	Х	Х	Х	Х	Х	Х
	Shane sv	sten	natics			
	signal acd		zhh z	cc di	R tthar	
JES	x	ے رزے ۲	-00 Z X	x		
	x	x	x	x	x x	
JETID	x	x	x	x	x x	
VCJ	x	x	x	x	x x	
Taggab	X	x	x	x	x x	
Trigger	x	x	X	x	x x	
D _T Z		X	X	X		
btadHF	х		х	х	х	
btagLF		х			х	
virw		х	х	х		
icr_rw		х	х	х		
VH_pT	х					
AlpMLM		х				
AlpScale		х	х	х		
AlpUE		х	х	х		
E. Nagy - D0-Frai	nce			Sta	tus of t	he ZH-

RF histograms scaled

Up/Down RF histograms by varying the nuisance parameters and/or event weight with ± 1 σ

->IIbb search

Limit setting

Collie V00-04-09 is used Channels: 5 x 2 CCCC CCEC eeICR µµ µµtrk ST DT Epochs: Run2a Run2b1 Run2b234

Limits w/o systematics (CLfast)

Limits w/ systematics (CLfit2) nuisance parameters fitted to both bg and sg+bg hypotheses on condensed files channels epochs RF rebinned in similar s/sqrt(b) bins

Where are we today?

Summary

Since spring'11: new statistics

from Run2b4: now $L_{int} = 8.6 \text{ fb}^{-1}$

mu+trk in Run2b included

jet modeling improved \rightarrow good Data/MC agreement

new jet treatment of T. Guillemin included

new jet eta reweighting

new parametrization of the QCD bg in di-e channel

 $H \rightarrow cc/\tau\tau$ added to signal

As of today:

Preselection completed

To-Collie files (mainly systematic histograms) under preparation Results (limits) and analysis note will be ready in the coming days **Backup slides**

Comparison run2a vs total expected sqrt(8/1) = 2.8

(CLFit2 on condensed)

M _H	run2a (1fb ⁻¹)	all (8 fb ⁻¹)	$R=L_{run2a}/L_{all}$	<r></r>
100	11.054	3.695	2.99	
105	12.128	4.053	3.00	
110	13.558	4.345	3.12	3.04
115	15.082	4.647	3.24	
120	17.747	5.233	3.33	
125	21.231	6.774	3.13	3.23
130	26.542	8.242	3.22	
135	35.470	11.366	3.12	
140	47.896	14.830	3.22	3.18
145	71.487	22.051	3.24	
150	111.280	34.764	3.20	3.22

In the first 3 masses the increase is \sim 3, for the others \sim 3.2

This doesn't point to a need for reanalyzing run2a since expected improvement < 3%.

Epochs	L _{int} fb ⁻¹
Run2a	1.1
Run2b1	1.2
Run2b23	5.0
Run2b4	1.3
Total	8.6

Backgrounds

Triggers

e+e-	Inclusive	~100%	No correction
ee _{ICR}	Ejets_OR		MC corrected
µ+µ-	Inclusive		MC corrected
$\mu\mu_{trk}$	Inclusive		MC corrected

EM-ID operating points

In CC Point0, in EC Point05 was used

Point0:

Isolation_CC: 0.09 Isolation_EC: 0.1 EMFraction_CC: 0.90 EMFraction_EC: 0.90 HMx8_EC: 40. IsoHC4_CC: 4.0 IsoHC4_EC: 100. TrkMatchChi2_CC: 0.0 EMHits_e_f_CC: 0.6 NNout7_CC: 0.4 NNout4_EC: 0.05 Sigphi_EC: 100.

Point05:

Isolation_CC: 0.15 Isolation_EC: 0.05 EMFraction_CC: 0.90 EMFraction_EC: 0.97 HMx8_EC: 10. IsoHC4_CC: 3.5 IsoHC4_EC: 200. TrkMatchChi2_CC: 0.0 NNout7_CC: 0.30 NNout4_EC: 0.20 Sigphi_EC: 100. LHood_CC: 0.05 EOP_CC: 8.0

Modeling issues

Spring'11 plots ccec run2b234

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/archive/analysis_v3.2/preselection/zhccecbb_run2b234/2jet_masscut/

E. Nagy - D0-France 30th May 2011

http://www-clued0.fnal.gov/~lwelty/d0_private/summer_2011/vjets_050607_p2122/summer_2011_results/nominal_newvjetrw_newicrrw/control_plots/run2b234/ccec/2jet_masscut/

E. Nagy - D0-France 30th May 2011

Spring'11 plots

eeicr run2b234

http://www-d0.fnal.gov/Run2Physics/higgs/zh_llbb/d0_private/plots/archive/analysis_v3.2/preselection/zheicrbb_run2b234/2jet_masscut/

EPS'11 plots eicr run2b234

http://www-clued0.fnal.gov/~cousinou/zheicr_run2b234-p201803_vj564_with-icrrw/2jet_masscut/

run2b1 cccc

	inclusive	0j	1j	2j-multijet	2j-pretag	ST	DT
data	57040	45457	6023	1888	1447	55	17
all bkg	55728 ± 47	44736 ± 42	5640 ± 11	1751.0 ± 6.6	1388.2 ± 5.1	44.10 ± 0.58	17.39 ± 0.15
Multijet	5138 ± 33	4200 ± 30	445.7 ± 9.5	192.3 ± 4.5	48.4 ± 2.0	0.90 ± 0.26	0.000000 ± 0.000000
Z_{jj}	48867 ± 33	39766 ± 29	4779.7 ± 6.3	1214.3 ± 4.7	1056.5 ± 4.5	3.29 ± 0.14	0.347 ± 0.058
Zbb	429.7 ± 1.2	177.37 ± 0.52	109.95 ± 0.39	90.46 ± 0.70	80.41 ± 0.68	22.61 ± 0.48	9.228 ± 0.093
Zcē	1147.0 ± 2.3	539.6 ± 1.6	267.37 ± 0.86	204.0 ± 1.0	167.78 ± 0.85	12.09 ± 0.12	2.133 ± 0.038
ZZ	25.89 ± 0.15	7.826 ± 0.077	5.923 ± 0.067	10.99 ± 0.11	10.16 ± 0.11	0.845 ± 0.025	0.737 ± 0.069
WZ	30.34 ± 0.20	10.93 ± 0.13	7.322 ± 0.087	10.47 ± 0.10	10.00 ± 0.10	0.431 ± 0.019	0.0518 ± 0.0073
WW	55.64 ± 0.37	33.66 ± 0.30	16.41 ± 0.17	2.338 ± 0.081	1.084 ± 0.054	0.0259 ± 0.0096	0.0066 ± 0.0041
tī	34.60 ± 0.23	0.894 ± 0.049	7.362 ± 0.099	26.07 ± 0.20	13.91 ± 0.12	3.903 ± 0.072	4.886 ± 0.068
ZH(115)	0.9303 ± 0.0067	0.1124 ± 0.0034	0.1996 ± 0.0026	0.5999 ± 0.0051	0.5820 ± 0.0050	0.1598 ± 0.0027	0.1799 ± 0.0024

run2b1 ccec

data	inclusive 53344	0j 42884	1j 5202	2j-multijet 1644	2j-pretag 1299	ST 31	DT 15
all bkg	52982 ± 59	42878 ± 50	4966 ± 20	1562 ± 11	1271.7 ± 8.1	30.35 ± 0.70	9.57 ± 0.37
Multijet	10888 ± 52	8230 ± 44	1288 ± 20	463.7 ± 9.2	246.0 ± 6.0	4.20 ± 0.63	0.73 ± 0.24
Z_{jj}	41033 ± 29	34144 ± 25	3447.2 ± 5.3	898.8 ± 5.2	841.2 ± 5.1	2.55 ± 0.15	0.174 ± 0.044
Zbb	262.6 ± 1.1	114.63 ± 0.40	62.21 ± 0.27	52.87 ± 0.53	49.90 ± 0.51	13.19 ± 0.16	5.30 ± 0.27
Zcē	739.3 ± 2.2	365.8 ± 1.0	157.39 ± 0.57	126.3 ± 1.8	117.2 ± 1.8	8.29 ± 0.21	1.259 ± 0.034
ZZ	11.582 ± 0.099	3.406 ± 0.054	2.597 ± 0.055	5.048 ± 0.058	4.848 ± 0.057	0.422 ± 0.019	0.314 ± 0.014
WZ	18.32 ± 0.16	6.079 ± 0.083	4.236 ± 0.066	7.10 ± 0.11	6.88 ± 0.11	0.313 ± 0.016	0.0335 ± 0.0064
WW	19.89 ± 0.24	14.26 ± 0.20	2.84 ± 0.10	1.436 ± 0.062	0.915 ± 0.049	0.0340 ± 0.0091	0.00091 ± 0.00091
tī	9.02 ± 0.13	0.254 ± 0.057	1.696 ± 0.051	6.989 ± 0.099	4.732 ± 0.075	1.346 ± 0.046	1.765 ± 0.045
ZH(115)	0.3897 ± 0.0038	0.0408 ± 0.0010	0.0797 ± 0.0016	0.2599 ± 0.0033	0.2554 ± 0.0033	0.0712 ± 0.0017	0.0769 ± 0.0016

The D0 method

aka semi-frequentist or CLs method

Log-Likelihood-Ratio (LLR) as test statistics:

$$LLR = -2In \frac{P(N \,|\, H_1)}{P(N \,|\, H_0)}$$

 $\rm H_{0}$ and $\rm H_{1}$ - test hypotheses of background w/o and w/ signal

- N ensemble of number of events
- P Poissonian pdf of N: $P = e^{-\mu}\mu^{N}/N!$ includes pdf of nuisance parameters θ: e²

Profiling:

LLR is minimized wrt the nuisance parameters

Confidence levels: $1-CL_b = p(LLR_b < LLR_{obs}|H_0)$ $CL_{sb} = p(LLR_{sb} > LLR_{obs}|H_1)$ $CL_s = CL_{sb}/CL_b$

A signal R=(σxBR)/(σxBR)_{SM} is excluded @ 95% CL if CL_s(R)= 0.05 i.e. 1-CL_s(R)= 0.95

It has been checked that the Bayesian and CLs methods give comparable results (~10%)

E. Nagy - D0-France 30th May 2011

E. Nagy - D0-France 30th May 2011