

ZH→vvbb: towards EPS 2011

Thibault Guillemin,

on behalf of the ZHvvbb team

D0-France

May 30, 2011

Analysis strategy

-) Jets + MET trigger
- 2) Basic selection:
 - 2-3 taggable jets (p_T >20 GeV, $|\eta|$ <2.5), $\Delta \Phi$ >2.88, MET>40 GeV, METsig>5

+ lepton veto to ensure orthogonality with the WH direct search

- Reduction of the multijet background with a discriminant
- 4) Apply b-tagging
- Separate the signal from the remaining SM backgrounds with two physics discriminants (1-tag, 2-tag)

Definition of two samples in addition to the signal one:

- Multijet control sample:
- MET>30 GeV
- no MET significance cut
- **Electroweak control sample:**
- invert the muon veto
- METMU>20 GeV and M_{TW} >30 GeV

From Moriond to EPS

Moriond: 6.2 fb⁻¹ Run IIb result

EPS: 8.4 fb⁻¹ Run II result, including Run IIa

The decision to re-analyse Run IIa data was taken for two reasons:

1) optimize the sensitivity of this dataset using all the Run IIb improvements

 cross-check the Run IIa publication result, where a very background-like fluctuation was observed (this result was not published by itself but only combined with the Run IIb result)

Run IIa vs Run IIb differences

Main difference at the trigger level In Run IIa:

- no MET cut at L1
- no min∆Φ(jets,MHT)>25° cut at L3

➔ significant enhancement of the relative multijet contribution in Runlla

×10

ZH→v⊽bb Analysis sample (pre b-tag)

Data modeling for Run IIa

b-tagging for Run IIa

In the publication, the NN algorithm was used

➔ we now use the MVA technique and inject the MVA bl outputs of the tagged jets in the physics decision trees

Decision trees and limits for Run IIa

- We include the full Summer dataset: additional 1.3 fb⁻¹ of data → 7.5 fb⁻¹ Run IIb data
- Update of the analysis framework
- add a lot of tracking information
- new jet treatment
- latest combined vertex confirmation/taggability weights
- latest b-tagging TRFs
- Strategy: capitalize on our Moriond result and investigate two improvement areas:
- multijet model
- MVA optimization

Multijet model (1/2)

 WH has a relatively low efficiency (92%) for the default signal/side band definition cut (ZH: 98%)

➔ this is mainly due to muons being found in the tracking system but not in the muon system

→ the WH acceptance can be increased by ~5% if we remove the isolated tracks from the missing track p_T calculation

 \rightarrow we performed several tests using various track p_T thresholds and also the fake track killer information

We still have modeling issues
➔ not sufficiently validated to be used for EPS

 A lot of efforts to try to optimize the sensitivity, starting from the "Moriond MVA":

- merging epochs for training
- optimization of the MJDT cut value
- choice of the MJDT and physics DTs input variables
- ➔ new variables but also trying to reduce the number of input variables
- binning of the final DT ouputs
- More improvements to come (post EPS):
- 3rd jet b-tagging
- kinematic inputs for third jet (various masses)
- separate training for 2-jet and 3-jet events
- train separate DTs against different backgrounds (W, Z, top)

see N. Osman's talk tomorrow

Ex: impact of the MJDT number of variables reduction

CLFit2 Fast Approximation limits

Final sensitivity with only 5 variables similar to the one with 20 variables

- Frozen set of DT input variables:
- MJDT: 5 variables
- Physics DTs: 10 + MVA bl of tagged jets

Data modeling for Run IIb2-3-4 data (6.3 fb⁻¹)

D0-France, ZH→vvbb

Decision trees for Run IIb

Run IIb1

All the MC samples (nominal and systematics) have been processed

➔ final limits are about to be computed...

Conclusion

Very solid result for Moriond:

6.2 fb⁻¹ Run IIb data $\rightarrow \sigma_{exp} = 4.0$

- Building on this result for EPS:
- ightarrow use this analysis as a baseline for the re-analysis of Run IIa data
- → implement only validated/understood improvements in Run IIb:
- multijet model
- MVA optimization

We are very close to get final results for 8.4 fb⁻¹ of Run II data

• Summer 10 Tevatron combination: $\sigma_{exp} = 4.3$ We should be close to $\sigma_{exp} \sim 3$ (more than 30% improvement, what is needed to reach the SM sensitivity at 115 GeV)

