

Top Physics and W Mass Prospects at LHC in 2011/2012

Tobias Golling

D0 France, LPNHE 30 May 2011

Disclaimer

- Supposed to be a talk on "prospects"
- However, most prospects are done on 10 TeV or 14 TeV and are therefore obsolete for 2011/2012 data
- I will give an overview over the status of top physics and the W mass measurement and I will try to extrapolate using MC studies

ATLAS Data Taking (Similar for CMS)

Top Physics at the LHC

Top Quark Results – ATLAS and CMS

- 280 nb⁻¹
 - First event display (ATLAS-CONF-2010-063)
 - Background distributions (ATLAS-CONF-2010-087)
- 3 pb⁻¹
 - Top quark pair cross section (arXiv:1012.1792)
- Production cross section (35 pb⁻¹)
 - Single lepton pre-tag (ATLAS-CONF-2011-023)
 - Single lepton b-tag (ATLAS-CONF-2011-035)
 - Dilepton(ATLAS-CONF-2011-034)
 - Combination (ATLAS-CONF-2011-040)
 - All-hadronic (ATLAS-CONF-2011-066)
 - Single top (ATLAS-CONF-2011-027)
- Properties (35 pb⁻¹)
 - Mass (ATLAS-CONF-2011-033)
 - Mass from cross section (ATLAS-CONF-2011-054)
 - W helicity (ATLAS-CONF-2011-037)
- Search for new physics (35 pb⁻¹)
 - tt + anomalous MET (ATLAS-CONF-2011-036)
 - tt resonances (ATLAS-CONF-2011-070)
 - FCNC (ATLAS-CONF-2011-061)

- 78 nb⁻¹
 - First event display (CMS-PAS-TOP-10-004)
- 3 pb⁻¹
 - Top quark pair cross section (arXiv:1010.5994)
- Production cross section (35 pb⁻¹)
 - Combination (CMS-PAS-TOP-11-001)
 - Single top (CMS-PAS-TOP-10-008)
- Properties (35 pb⁻¹)
 - Mass (CMS-PAS-TOP-10-006)
 - Charge asymmetry (CMS-PAS-TOP-10-010)
- Search for new physics (35 pb⁻¹)
 - tt resonances (CMS-PAS-TOP-10-007)
 - Charged Higgs (CMS-PAS-HIG-11-002)

Will show example results with full 2010 data set (~35 pb⁻¹) from ATLAS or CMS typically performance is comparable

Tobias Golling, Yale

Top Prospects – ATLAS and CMS

- Top potential for 2011/2012 (ATL-PHYS-PUB-2011-004)
- Top mass (ATL-PHYS-PUB-2010-004)
- tt resonances (ATL-PHYS-PUB-2010-008)
- Single top (ATL-PHYS-PUB-2010-003)
- Single top (ATL-PHYS-PUB-2009-001)
- arXiv:0901.0512v4 (Expected Performance)

- JES using tt (CMS-PAS-TOP-07-004)
- R and efficiency in tt (CMS-PAS-TOP-09-001)
- R in tt (CMS-PAS-TOP-09-007)
- tt resonances (CMS-PAS-TOP-09-009)
- Single top (CMS-PAS-TOP-09-005)

The LHC is a Top Factory (already now)

- $\sigma_{ttbar}^{NNLO}(\sqrt{s}=7 \text{ TeV}) \sim 165 \text{ pb} = 20 \sigma_{ttbar}^{TeV}$ (Tevatron)
- 3 fb⁻¹ @ 7 Tev (expected by end of 2011)
 - 500 k ttbar produced (~6 times the Tevatron statistics)
 - 30 k selected b-tagged lepton+jets events (e and μ)
 - 7 k selected dilepton events (e and μ)

σ_{tt} Single Lepton (no b-tagging)

• Likelihood based on three uncorrelated discriminating variables

Binned maximum likelihood to 4 channels (3-jets,≥4-jets; e,µ)

Syst. source	Rel. unc. %
Jet en. scale & Reconstruction	-6.1 / +5.7
ISR/FSR	-2.1 / +6.1
QCD norm.	3.9
QCD shape	3.4
Parton shower & hadronisation	3.3
Total syst.	-10.2 / +11.6

Independent of b-tagging

Avoids related b-tagging systematics at the price of a worse S/B

Relative uncertainty ~15%

 $\sigma_{tt} = 171 \pm 17(stat)^{+20}_{-17}(syst) \pm 6(lumi) \text{ pb}$

5/30/11

Likelihood discriminant

$\sigma_{\rm ff}$ Single Lepton (with b-tagging)

- Multivariate method •
- Input variables: lepton η , aplanarity, $H_{T,3p}$, b-tag weight ٠
- Profile likelihood with nuisance parameters ٠

Tobias Golling, Yale

9

80 ATLAS Preliminary

 $L dt = 35 \, pb^{-1}$

KS test: 0.11

70|

60[†]

50E

 $\mu + \ge 5$ Jets 🗕 data

W+Jets

0.8

 $exp(-4 \times H_{T3p})$

Other

0.6

σ_{tt} Dilepton Channel

• Event counting with dedicated data-driven techniques for the estimation of background

 $\sigma_{t\bar{t}} = 168 \pm 18 \,(\text{stat.}) \pm 14 \,(\text{syst.}) \pm 7 \,(\text{lumi.}) \,\text{pb}$

tt Cross Section Combination

Combined lepton+jets and dilepton from joint fit

- Accounts for all (anti)-correlated systematic uncertainties
- Reached 10% relative uncertainty
- Already systematics limted
- But systematics will improve with more statistics

CMS Preliminary, \s=7 TeV

Prospects for tt Cross Section

- Already now systematics limited, ideas to reduce systematics
 - Use kinematic discriminants insensitive to JES
 - Measure b-tagging efficiency together with cross section
 - Measure light and b-jet JES in hadronic top decays, 1% uncertainties possible
 - Measure tt+jets to constrain ISR/FSR uncertainties
- Differential tt cross sections benefit from increased statistics
- Possible 8 TeV collisions in 2012 would allow for new cross section measurement
 - Cross section increase by 40%
 - No big change in S/B

 $< N_n >= \sum_{i,jk} \left\{ [\sigma_{t\bar{t}} \cdot BR \cdot A_{t\bar{t}} \cdot L \cdot F_{ijk}^{t\bar{t}} + N_{Z+jets} F_{ijk}^{Z+jets} + N_{other} \cdot F_{ijk}^{other}] \times \sum_{\substack{i'+j'+k'=n \\ i'+j'+k'=n}} C_i^{i'} \epsilon_b^{i'} (1-\epsilon_b)^{i-i'} \cdot C_j^{j'} \epsilon_c^{j'} (1-\epsilon_c)^{j-j'} \cdot C_k^{k'} \epsilon_k^{k'} (1-\epsilon_l)^{k-k'} \right\}.$

Single Top Quark Cross Section

• 2D template fit and a multivariate technique (BDT)

5/30/11

 $\sigma_{\rm Wt}$ < 158 pb at 95%

Prospects for Single Top

Process	Cross-section (pb)
top-antitop pair	164.6
single-top t-channel	66.2
single-top Wt-channel	14.6
single-top s-channel	4.3

Channel	$\mathscr{A} \times BR$	$N_{\rm t}(\int \mathscr{L} = 1 {\rm fb}^{-1})$	$N_{\rm t}(\int \mathscr{L} = 5 {\rm fb}^{-1})$	S/B
t-ch (CB)	0.47%	310	1550	0.67
t-ch (MVA)	0.22%	150	750	1.13
Wt-ch (CB)	1.32%	190	950	0.08
Wt-ch (MVA)	0.33%	50	250	0.30
s-ch (CB)	0.23%	10	50	0.05
s-ch (MVA)	0.13%	6	30	0.10

Process	$\int \mathscr{L} = 1 \text{ fb}^{-1}$	$\int \mathscr{L} = 5 \mathrm{fb}^{-1}$
t-ch (CB)	38% (9%)	17% (4.2%)
t-ch (MVA)	32% (10%)	13% (4.8%)
Wt (CB)	100% (25%)	52% (11%)
Wt (MVA)	68% (30%)	32% (13%)

Cut Based (CB), Multivariate (MVA) Numbers in brackets are statistical errors only

- Prediction of systematic uncertainties can only be approximate
 - Assume same uncertainties for 1 fb⁻¹
 - Assume improved JES, b-tag calibration, QCD estimates by factor 2 for 5 fb⁻¹ (ISR/ FSR, modeling etc. unchanged)

Prospects for Single Top

- Wt channel out of reach for Tevatron
- t-channel vs. Wt-channel cross section with 5 fb⁻¹ sensitive to:
 - Anomalous couplings
 - 4th generation quarks
 - FCNC
 - Charged Higgs boson
 - Etc
- With smaller uncertainties than at the Tevatron
- S-channel remains difficult (10 expected events/fb⁻¹ with S/B ~ 5-10%) – more interesting in 2012 or beyond
- 8 TeV collisions
 - increase the single-top cross-section by 20, 30 and 40% for s-, t- and Wt-channels respectively
 - Improved S/B

Prospects for Top Mass & Charge

- Limited by JES uncertainty already below 1fb⁻¹
- Study estimators built on

ATLAS, approx NNLO (Langenfeld, Moch, Uwe

ATLAS, approx NNLO (Kidonakis)

ATLAS, NLO+NNLO (Ahrens et al)

D0, approx NNLO (Moch, Uwer)

D0, NLO+NLL (Cacciari et al.)

150

D0, approx NNLO (Kidonakis, Vogt)

Tevatron direct measurements (July 2010)

160

- using the pT of the lepton
- using track jets
- using a partial reconstruction of the final state involving J/ψ

Top quark mass from cross-section

ATLAS Preliminary, $L_{...} = 35 \text{ pb}^{-1}$

170 m_{top} [GeV] 166.4 +7.8

166.2 +7.8

162.2^{+8.0}

169.1^{+5.9}

168.2 +5.9

167.5^{+5.5}

173.3 +1.1

190

180

 Exotic top charge of 4/3 e can be excluded by more than 5σ with the data already taken (work in progress)
 5/30/11
 Tobias Golling, Yale
 16

Prospects for W Helicity

- SM predict helicity fractions of W from top
 - $F_L=0.301$, $F_0=0.698$, $F_R=4.1 \ 10^{-4}$
 - Set limits on new physics
- Benefit from larger luminosity

			Template method	Asymmo metho	etry od	35 pb ⁻¹ , 20	010
		F_L	0.41 ± 0.12	0.36 ± 0	.10		
		F_0	0.59 ± 0.12	0.65 ± 0	.15		
		F _B	Fixed 0	-0.01 ± 0	0.07		
-						Prospec	ts:
-	Quan	tity	Stat. (∫.£	$^{\circ} = 1 \text{fb}^{-1}$	Stat.	$(\int \mathscr{L} = 5 \mathrm{fb}^{-1})$	Syst.
-	e+jet	s chan	nel:				
-	fl		0.03		0.01		0.03
-	f_0		0.06		0.03		0.02
-	f_R		0.03		0.01		0.02
	μ+je	ts chai	nnel:				
-	f_L		0.03		0.01		0.03
1	f_0		0.05		0.02		0.02
)* [']	f_R		0.03		0.01		0.02

Prospects for tt Spin Correlations

- Systematics dominated by
 - PDFs
 - Factorization
 - b-fragmentation
- They do not change with an increased amount of data
- Statistics improvement are relevant for 5 fb⁻¹

Quantity	Stat. $(\int \mathscr{L} = 1 \text{ fb}^{-1})$	$(\int \mathscr{L} = 5 \mathrm{fb}^{-1})$	Syst.
e+jets channel:			
Α	0.27	0.12	0.18
A_D	0.17	0.08	0.09
μ+jets channel:			
Α	0.22	0.10	0.18
A_D	0.14	0.06	0.09

Charge Asymmetry

- At the Tevatron: deviation > 3σ from SM predicted A_{FB} ~5%
- At the LHC: Initial state symmetric (pp collider!)
 - charge asymmetry visible in
- Expected asymmetry is small A_C = 0.0130(11) [Ferrario, Rodrigo, et. al.]
 - Increased by BSM like a Z',
 W' or axigluon
- L = 1 fb⁻¹ necessary to compete with Tevatron

 $A_C = 0.060 \pm 0.134 \, (\text{stat.}) \pm 0.026 \, (\text{syst.})$

1/o do/d(|m_t|-|m_t])

tt Resonances

 Expect 95% CL of ~1 pb (or better) for Z' of 1 TeV with 5 fb⁻¹

FCNC

Table 2: Present experimental limits on the branching fractions of the FCNC top quark decay channels.

	LEP	HERA	Tevatron
$Br(t \rightarrow q\gamma)$	2.4% [30-34]	0.64% (tuy) [35]	3.2% [36]
$Br(t \rightarrow qZ)$	7.8% [30–34]	49% (tuZ) [37]	3.2% [38]
$Br(t \rightarrow qg)$	17% [39]	13% [37,40,41]	2.0×10^{-4} (tug), 3.9×10^{-3} (tcg) [42]

Limits with 35 pb⁻¹ (2010):

 $BR(t \rightarrow qZ) < 17\%$ at 95% confidence level (CL). $\sigma_{qg \rightarrow t} \times BR(t \rightarrow bW) < 17.3 \text{ pb.}$

Prospects (2011/2012):

Quantity	$\text{Limit}(\int \mathscr{L} = 1 \text{ fb}^{-1})$	$(\int \mathscr{L} = 5 \mathrm{fb}^{-1})$
$BR(\bar{t}t \rightarrow bWq\gamma)$	$1.5 \cdot 10^{-3}$	$6.8 \cdot 10^{-4}$
$BR(\bar{t}t \rightarrow bWqZ)$	$6.3 \cdot 10^{-3}$	$2.8 \cdot 10^{-3}$
$BR(\bar{t}t \rightarrow bWqg)$	$2.7 \cdot 10^{-2}$	$1.2 \cdot 10^{-2}$

• Limits with 5 fb⁻¹ are expected to be better than Tevatron

tt+MET

- Search for anomalous MET in tt events
- Benchmark: TT pair, $T \rightarrow t+dark$ matter particle
- Signal region: high MET, high W mT
- Exclude m(T)<275 (300)GeV for m(XP)<50 (10)GeV
- Soon competitive with Tevatron
- Reach full interesting mass region m(T)~600 GeV
 end of 2012
- Also sensitive to 3rd gen LQ, stop production etc.

Alwall, Feng, Kumar et al. (2010) Berger, Cao (2009)

W Mass Measurement – Motivation

mW Measurement – LHC Prospects

- arXiv:0805.2093v2: Re-evaluation of the LHC potential for the measurement of mW (14 TeV)
- 10^7 W events per lepton channel (e, μ) in 5 fb⁻¹
- 2 MeV statistical uncertainty
- Measurement systematics limited
 - energy scale, resolution, efficiency
 - Theoretical inputs: W boson kinematical distributions (rapidity, transverse momentum)
 - proton structure function uncertainties and higher orders QCD effects
 - QED effects (photon radiation)
 - Background, pile-up
- Systematic uncertainties can be strongly constrained with Z measurements (factor of ten less statistics)
 - lineshape, $d\sigma_z/dm$ (robustly predicted)
 - Detector resolution and absolute scale
 - differential cross-section $d^2\sigma_7/dydp_T$ absorbs the strong interaction uncertainties

Towards mW Measurement

- QCD background estimate from low MET
- Compare m_T with templates
- m_W from χ^2 test
- First measurements:
 - Ζγ, Wγ (arXiv: 1105.2758, ATLAS-CONF-2011-013)
 - $d\sigma_z/dy$, $d\sigma_z/dp_T$ (CMS-PAS-EWK-10-010)
 - W charge asymmetry (arXiv:1103.2929, arXiv:1103.3470)

10 fb⁻¹ @ 14 TeV

- Systematics ~scales with Z statistics
- Can be further improved
 with higher statistics
- Main assumptions in Table
 - QED simulation tools providing the same level of accuracy as @ LEP, already satisfactory (PHOTOS, HORACE, ...)
 - Light flavor symmetry in PDF's
 - Heavy flavor input from Wc, Zb (EWK-10-015), Zc

Source	Effect	$\partial m_W / \partial_{rel} \alpha$ (MeV/%)	δ _{rel} α (%)	δm_W (MeV)
Prod. Model	W width	1.2	0.4	0.5
	y ^w distribution	_	_	1
	p_T^W distribution	_	_	3
	QED radiation	_	_	<1 (*)
Lepton measurement	Scale & lin.	800	0.005	4
	Resolution	1	1.0	1
	Efficiency	_	-	4.5 (e); <1 (µ)
Recoil measurement	Scale	-	_	-
	Resolution	-	-	-
Backgrounds	$W \rightarrow \tau v$	0.15	2.5	2.0
	$Z \rightarrow \ell(\ell)$	0.08	2.8	0.3
	$Z \rightarrow \tau \tau$	0.03	4.5	0.1
	Jet events	0.05	10	0.5
Pile-up and U.E				<1 (e); ~ 0(μ)
Beam crossing angle				<0.1
Total (p_T^ℓ)				~7 (e); 6 (µ)

Source	Effect	$\partial m_w / \partial_{-w} \alpha $ (MeV/%)	$\delta_{\omega}\alpha$ (%)	δm_{W} (MeV)
Prod. Model	W width	3.2	0.4	1.3
	v ^W distribution	_	_	1
	p_T^W distribution	_	_	i
	QED radiation	_	_	<1 (*)
Lepton measurement	Scale & lin.	800	0.005	4
	Resolution	1	1.0	1
	Efficiency	_	_	4.5 (e); <1 (µ)
Recoil measurement	Scale	-200	_	_
	Resolution	-25	_	_
	Combined	_	_	5 (**)
Backgrounds	$W \rightarrow \tau v$	0.11	2.5	1.5
	$Z \rightarrow \ell(\ell)$	-0.01	2.8	0.2
	$Z \rightarrow \tau \tau$	0.01	4.5	0.1
	Jet events	0.04	10	0.4
Pile-up and U.E				<1 (e); ~ 0(μ)
Beam crossing angle				<0.1
Total (m_T^W)				~8 (e); 7(µ)

5/30/11

LHC and Detector Outlook

- Great LHC and detector
 performance
 - Plan to reach 5 x 10³³
 in next weeks/months
 - 20 events pile-up
 - 12 already now
 - 25 ns bunch spacing planned before end of year
 - >500 pb⁻¹ recorded in
 2011
 - 3-5 fb⁻¹ by end of 2011

- Important: pile-up
 - Impact on JES,
 MET, lepton
 isolation, b-tagging

Physics Summary and Outlook

- The era of LHC top physics has started
 - First measurements of top quark pair production with 3 pb⁻¹, then 35 pb⁻¹ (2010)
 - ATLAS and CMS measurements and theory agree well
 - First 2011 top results shown at PLHC next week
 - Systematic uncertainties already start to dominate total uncertainties
- 2011 is the year of precision top measurements at the LHC
 - Expect 6-10 times top Tevatron statistics in 2011
 - In-situ calibration techniques to reduce systematics
 - Advanced analysis techniques
 - Cross section, single top t-channel observation, sensitivity to Wt single top mechanism
 - top mass, charge and other properties, such as spin correlations, the Whelicity and the search for resonances, gain from the full luminosity of 2011
 - Further properties, e.g., CTP tests, V_{ts} , tt+photon production cross-section or qqbar vs gg production might only be measurable within 2012 or beyond
- Improved W mass measurement expected by the end of 2012: ≤10 MeV

Backup

Extrapolated tt Numbers

Assuming σ_{tt} = 164.6 pb (HATHOR)

Channel	$\mathscr{A} \times BR$	$N_{\mathrm{t}\bar{\mathrm{t}}}(\int \mathscr{L} = 1 \mathrm{~fb}^{-1})$	$N_{\rm t\bar{t}}(\int \mathscr{L} = 5 {\rm fb}^{-1})$	S/B
$t\bar{t} \rightarrow e + jets$	3.10%	5.1k	25.5k	2.0
$t\bar{t} \rightarrow \mu$ +jets	3.20%	5.3k	26.3k	4.6
$t\bar{t} \rightarrow ee$	0.24%	0.4k	2.0k	1.9
$t\bar{t} \rightarrow \mu\mu$	0.38%	0.6k	3.1k	2.0
$t\bar{t} \rightarrow e\mu$	0.81%	1.3k	6.6k	4.0

- After kinematic selection
- Requiring ≥1 b-tag in I+jets channel