D0 Runllb 4.3 fb-1 W Mass Analysis

Hengne Li / LPSC Grenoble

For the Runllb W mass Analysis group:

Daniel Boline, John Hobbs*, Tibor Kurca, Patrice Lebrun, Hengne Li*, Rafael Lopes de Sa, Bob McCarthy, Alex Melnitchouk, Pierre Pétroff, Heidi Schellman, Jan Stark, Sahal Yacoob

[^0]
Outline

- Motivation
- Analysis Strategy
- Challenges in Run IIb
- The Parameterized Detector Model for RunIIb Analysis
- Status of Full MC Closure Test
- Status of Data Analysis
- Summary
/N2P3

Motivation:

Knowledge of the \mathbf{W} mass is currently the limiting factor to tighten the constraint on the Higgs boson mass.

- Based on the internal consistency of the SM, we can predict the unknown Higgs boson mass
- The imperfect knowledge of \mathbf{W} boson mass and Top quark mass, brings the biggest uncertainty into this prediction
- For equal contribution to the Higgs boson mass prediction uncertainty, it requires :

$$
\delta \mathrm{M}_{\mathrm{W}} \sim 0.006 \delta \mathrm{M}_{\mathrm{t}}
$$

I. e. Current World average:

$$
\begin{array}{ll}
\text { accuracy of } \mathrm{Mt}: & \delta \mathrm{M}_{\mathrm{t}}=1.1 \mathrm{GeV} \text { needs } \\
\begin{array}{ll}
& \delta \mathrm{M}_{\mathrm{W}}=7 \mathrm{MeV} \\
\text { accuracy of } \mathrm{M}_{\mathrm{W}}: & \delta \mathrm{M}_{\mathrm{W}}=23 \mathrm{MeV}
\end{array}
\end{array}
$$

The limiting factor on the M_{H} prediction is δM_{w} not δM_{t}

Current world average central value of W mass $(80.399 \mathrm{GeV})$ prefers a non-SM Higgs:
e.g. If the central value of M_{W} does not change in the future, a $\mathbf{1 5} \mathbf{~ M e V}$ precision
will exclude SM Higgs at 95% CL. (P. Renton, ICHEP 2008)

A typical W -> ev event

Three observables:

(plots from published RunIIa 1 fb-1 analysis, Phys. Rev. Lett. 103, 141801 (2009).)

Developed a Fast MC model to generate templates of the 3 observables with different W mass hypotheses. Fit the templates to the Data to extract W mass.

The Fast MC model:

- Event Generator: Resbos+Photons
- Parameterized Detector Model

Soft component

> The Parameterized Detector
> Model is essential in this analysis!

Challenges in RunIIb

RunIIb high instantaneous luminosity results in much higher energy flow from additional $p \bar{p}$ collisions (Zero-Bias) complicates the modeling of detector effects:

The Parameterized Detector Model for RunIIa analysis is not sufficient to describe RunIIb Data!
$1-P S$
Grenobse

Efficiency Model of Electron Reconstruction:

- Sources: Trigger, Geometry Acceptance, Cluster Structure, and Track Matching
- Dependence: electron P_{T}, Eta, distance to Phi Cracks,
- Sources: Zero-Bias Contamination (RunIIlb Challenge) and Hadronic Contamination
- Dependence: electron $P_{T}, \underline{\text { Scalar }} \mathbb{E}_{T}$, Inst. Lumi., and $U_{\|}$(recoil projection to the electron direction)

Model Update in RunIIb:
We explicitly included the Inst. Lumi. dependence, and its correlation with SET dependence to describe the inefficiency due to Zero-Bias contamination.

However, we can still observe strong Inst. Lumi. dependence after this update.

-PSE
Grenobce

Electron Model:

$$
E_{r e c o}=R_{\text {Response }}^{E M}\left(E_{t r u e}\right) \otimes \underset{\text { Resolution }}{E_{M}}\left(E_{t r u e}\right)+{\underset{\text { RunIIb Challe }}{ } E_{c o r r}}^{E_{\text {Run }}}
$$

(RunIIIb Challenge)
Response and Resolution are calibrated using Z invariant mass of Z->ee Data
$\Delta E_{\text {corr }}$ Model: Model Update in RunIIIb

$$
\begin{aligned}
& \vec{u}_{T}=\underset{\substack{\text { Hard Recoil } \\
\text { balancing W }}}{\vec{u}_{\substack{\text { Soft Recoil: } \\
\text { Zero-Bias and }}}^{\mathrm{Hard}}+\vec{u}_{\substack{\text { Model Update in RunIIIb }}}^{\mathrm{Soft}}+\vec{u}_{T}^{\mathrm{Elec}}+\vec{u}_{T}^{\mathrm{FSR}}} \\
& \text { balancing } \mathbf{W} \\
& \text { or Z boson } \\
& \text { In the same framework of } \boldsymbol{\Delta} \boldsymbol{E}_{\text {corr }} \text { Modeling } \\
& \text { What has been added to (subtracted from) the } \\
& \text { electron has to be subtracted from (added to) } \\
& \text { the Recoil. }
\end{aligned}
$$

Recoil, Mini-Bias, and Zero-Bias

Recoil Model:

Add Inst.Lumi, SET, Eta dependencies

2. Recoil, Mini-Bias and Zero-Bias Contamination inside electron window
3. Effects due to Zero-Suppression and Baseline-Subtraction

For modeling 2. and 3., we added Inst. Lumi., SET, electron \mathbb{P}_{T} and $U_{\|}$ dependencies in a very complicated way, based on a new Wenu FullMC production with Electron and Recoil separated.

1. Energy Leakage due to FSR

The Model Updates Work? Yes!

Electron mean energy response (truth-reco.) as a function of $\mathbf{u}_{\|}$ for 4 Inst. Lumi. sub-samples, comparing FullMC and FastMC

FullMC Closure Test Status

1N2P3
Grenobse
FullMC W -> e nu 62M events generated, 9.8 M events after selection

WCandMt_Spatial_Match_0

Looks nice for all the $\mathbf{3}$ observables: M_{T}, ElecP P_{T} and Missing E_{T}.
The fits of W Mass and Width close.
(fitted central values agree with the input value within 1 sigma)

Remaining Recoil Fine Tuning Issue

However, there is a small issue related to the Recoil Fine Tuning. This affects the MissingET a little.

Investigating in two directions:

- Modeling of $\mathrm{P}_{\mathrm{T}}(\mathrm{ee})$ in Zee (next slide).
- Choice of parameterization of Recoil Fine Tuning needs to be revisited.
- Approach is on going for the Recoil Fine Tuning parameterization using the "Recoil Energy Flow", which has proven to be useful in our RunIIa analysis.

Remaining Recoil Fine Tuning Issue

1 N 2 P 3
Grenobce

Reminding:

Eta-Imbalance is the reference for Recoil Fine Tuning.

$$
\eta_{i m b}=\left(\vec{p}_{T}^{Z}-\vec{u}_{T}\right) \cdot \hat{\eta}
$$

η-axis: the bisector in $R-\varphi$ plain of two electrons from Z decay

The Issue:

The Pt(ee) projection to Eta-Direction has a mis-match when Pt(ee) is large (small fraction of events). See plots on the right.

Consequences:

It will impact our Recoil fine tuning. If the $\operatorname{Pt}(\mathbf{e e})$ is wrong, this mistake will be transferred to the Recoil.

Investigations have shown, it is most likely caused by imperfections in our current description of the Phi Cracks.
Remember, the two electrons from the \mathbf{Z} decay are angularly highly correlated.

We observed that Data Zee has the same signature.
It requires more follow-up.

FullMC Z -> ee

Mean of $\operatorname{Pt}(e e)$ projection to Eta-Direction vs. Pt(ee)

FastMC-FullMC for each bin

Status of Data Analysis

Data Z -> ee

Data Zee has the same issue ! Might be the same source as a long time existing issue.

This issue is here since the beginning of RunIIb Analysis without being fixed!

It requires more follow-up.

Mean of Pt(ee) projection to Eta-Direction vs. Pt(ee)

FastMC-Data for each bin

Status of Data Analysis

Grenobxe

Data $\mathrm{Z}->\mathrm{e}$ e $\quad 4.3 \mathrm{fb}^{-1}, 54.5 \mathrm{k}$ events after selection

Status of Data Analysis

Grenobce

Data $\mathbf{Z}->\mathrm{e}$ e $\quad 4.3 \mathrm{fb}^{-1}, 54.5 \mathrm{k}$ events after selection

Look Nice, given the statistics of Zee Data

Status of Data Analysis

IN2P3
Grenobse

Data W ->e nu

χ distribution with overall $\chi^{2}=95.8$ for 100 bins

RunIIb 4.3 fb $^{-1}$ 1.7M events after selection

$$
\chi \text { distribution with overall } \chi^{2}=86.9 \text { for } 70 \text { bins }
$$

Look Nice!

Status of Data Analysis

IN2P3
Grenobse

Data W ->e nu

RunIIb 4.3 fb $^{-1} \quad 1.7 \mathrm{M}$ events after selection

ElecP ${ }_{\mathrm{T}}$ doesn't look nice, because of the Recoil P_{T}
${ }_{1 N 2 P 3}$

Data $\mathbf{W}->$ e nu \quad RunIIb $4.3 \mathrm{fb}{ }^{-1} \quad 1.7 \mathrm{M}$ events after selection

We know the degradation of the ElecP $\mathrm{P}_{\mathrm{T}} \mathrm{Jacobian}$ peak is due to the boost of the W boson.

To investigate this issue:

- At the generator level, we tried to re-weight Resbos using Phi* measured from D0 Data (Vesterinen et., al.,), we found the impact is negligible.
- But, we do have a certain mis-modeling of the Recoil. This is reflected in the ElecP P_{T} distribution because of the cut at Recoill $_{T}<15 \mathrm{GeV}$
- Cannot exclude the possibility that it is directly coming from the same source as the $\mathbf{P}_{\mathrm{T}}(\mathrm{ee})$ issue discussed before.

Summary

- FullMC Closure Test Closed!
- RunIIb High Inst. Lumi. is a formidable challenge, but we are almost there!
- The electron side is almost done, remaining issues related to the Recoil Fine Tuning.
- Consistency check is ongoing.
- Expected RunIIb (4.3 fb-1) accuracy:
- ~25 MeV (Stat. ~13 MeV + Syst. ~22 MeV)
- Plus RunIIa 1 fb $^{-1}$, Total RunII (5.3fb ${ }^{-1}$): ~22MeV

[^0]: * conveners

