Oscillations de neutrinos : première indication d'une apparition de ν_e dans l'expérience T2K au Japon

J. Dumarchez¹

¹LPNHE-Paris

Biennale du LPNHE 19/09/11

Oscillations de neutrinos

• Paramétrisation de la matrice de mélange U_{ii} (PMNS)

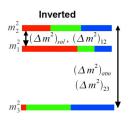
$$\begin{vmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{vmatrix} \times \begin{vmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{vmatrix} \times \begin{vmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ 0 & 0 & 1 \end{vmatrix} \times \begin{vmatrix} v_1 \\ v_2 \\ v_3 \end{vmatrix}$$

- δ est la phase de violation de CP
- La probabilité d'oscillation dépend de l'énergie (E), de la distance de vol (L), de la matrice de mélange U et des différences de masses carrées des neutrinos:

$$\begin{split} P_{\alpha \rightarrow \beta} &= \delta_{\alpha \beta} - 4 \sum_{i > j} \Re \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4 \, E} \right) \\ &+ 2 \sum_{i > j} \Im \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin \left(\frac{\Delta m_{ij}^2 L}{4 \, E} \right) \end{split}$$

Connaissance des paramètres d'oscillation avant T2K

3 angles de mélange, 2 différences de masse carrées, 1 phase CP


$$sin^{2}(2\theta_{12}) = 0.87 \pm 0.03$$

 $sin^{2}(2\theta_{23}) > 0.92 (90\% C.L.)$
 $sin^{2}(2\theta_{13}) < 0.12 (90\% C.L.)$
 $\delta = ?$

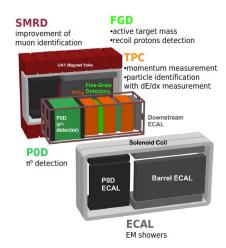
$$sin^2(2\theta_{12}) = 0.87 \pm 0.03$$
 $\Delta m_{12}^2 = 7.59 \pm 0.20 \times 10^{-5} eV^2$ $sin^2(2\theta_{23}) > 0.92 (90\% C.L.)$ $\Delta m_{23}^2 = 2.43 \pm 0.13 \times 10^{-3} eV^2$

SNO,KAMLAND,SK SK, K2K, MINOS **CHOOZ, MINOS**

Ambiguité sur le signe de $m_3^2 - m_2^2$ 2 hiérarchies de masse possibles

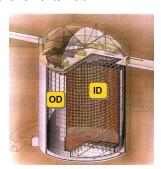
T2K: Tokai to Kamioka

Les premiers buts de l'expérience sont:

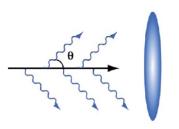

• La recherche d'apparition de ν_e :

$$P(
u_{\mu}
ightarrow
u_{e}) pprox sin^{2} heta_{23} sin^{2} 2 heta_{13} sin^{2} rac{\Delta m_{32}^{2} L}{4 E_{
u}}$$

La mesure précise de la disparition de ν_{μ}

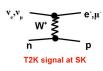

ND280 (Near Detector, off-axis)

- 0.2T aimant de UA1/NOMAD
- éléments utilisés dans cette analyse
 - FGD (Fine Grained Detectors): cible pour les neutrinos et tracking
 - TPC (Time Projection Chambers): mesure de l'impulsion et du dE/dx
- importants pour les analyses futures
 - POD (Pi0 Detector): mesure le taux de π^0 produits par NC (courants neutres)
 - ECAL: calorimètres électromagnétiques, pour identifier électrons et photons
 - SMRD: détecteur de muons installé dans le fer de retour

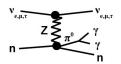


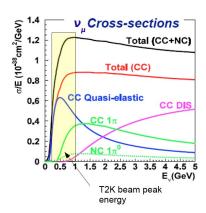
SuperKamiokande

- 50 kt (22.5 kt vol fiduciel): détecteur Cherenkov à eau
- équipé de 11000 PMT de 20" (détecteur interne ID: 40% couverture)
- ullet ~ 2000 PMT de 8" "regardant" vers l'extérieur (OD veto contre les cosmiques, la radioactivité ...)
- fonctionne depuis 1996, avec une bonne efficacité de reconstruction pour les événements <GeV

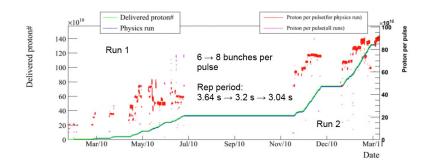

La lumière Cherenkov produit un anneau détecté par les PMT

Les interactions de neutrinos dans T2K


Dans la région d'intérêt pour T2K:


Importante contribution des quasi-élastiques en courant chargé (CCQE)

Contribution significative de $CC1\pi$ (courant chargé avec production d'un pion)


 $NC\pi^0$ (courant neutre avec production d'un π^0): bruit de fond important

Les photons de π^0 peuvent passer pour un électron

Données collectées

- données cumulées Run 1 + Run 2 = 1.43 × 10²⁰ POT
- démarré à 50 kW au Run 1, mais 145 kW en continu à la fin du Run 2 (750 kW nominal)
 - (augmenter le nombre de bunchs par spill, augmenter le nombre de protons par bunch, augmenter le taux de répétition)
- 2% de la statistique prévue pour T2K a été accumulée, et analysée

Analyse d'oscillation

Flux Prediction

- Proton beam measurements
- Hadron production data

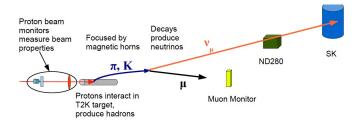
ND280 Measurement

- Inclusive v_µ CC measurement
- Output: $R_{ND}^{\mu,Data}/R_{ND}^{\mu,MC}$
- Measure v_g rate as cross-check

A

Neutrino Cross Sections

- Interaction models
- External cross section data

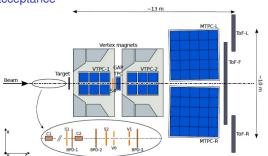

SK Measurement

- Develop v CCQE candidate selection
- Simulate expectation: $N_{\it SK}^{\it MC}$
- Adjust normalization using ND280 measurement:

$$N_{SK}^{\text{exp}} = R_{ND}^{\mu, Data} \times N_{SK}^{MC} / R_{ND}^{\mu, MC}$$

- Evaluate systematics
- Evaluate confidence intervals for data sample

Flux de neutrinos et modélisation

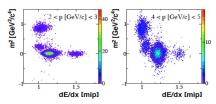

Simulation du flux de neutrinos

- input: mesures des moniteurs du faisceau de protons
- Production de hadrons dans la cible de carbone:
 - ullet données exp. de NA61 pour modéliser la production de π^\pm
 - production de kaons et autres interactions hadroniques: modélisation à travers FLUKA
- interactions hors de la cible, focalisation par les cornes, désintégration des particules
 - simulation GEANT3
 - sections efficaces d'interaction aiustées aux données existantes

jdz (Ipnhe-Paris) T2K Biennale du LPNHE 19/09/11 10 / 33

L'expérience NA61

Expérience d'ions lourds en cible fixe au CERN avec un spectromètre de grande acceptance


faisceau de 30 GeV (comme à T2K)

2 types de cible:

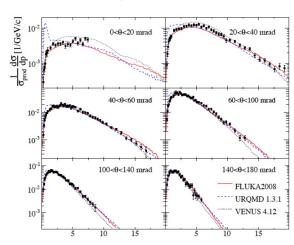
- 1. 4% de λ_I , cible mince
- 2. T2K replica target

seule la production de pions dans la cible mince est utilisée dans l'analyse actuelle

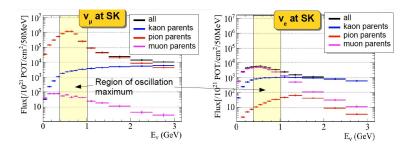
bonnes performances des TOF et dE/dx: bonne séparation des particules

Premiers résultats de NA61

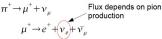
Mesure de la section efficace sur carbone à 30 GeV: $\sigma_{prod} = 229.3 \pm 9.2 mb$


sect. eff. différentielle de production des π^\pm

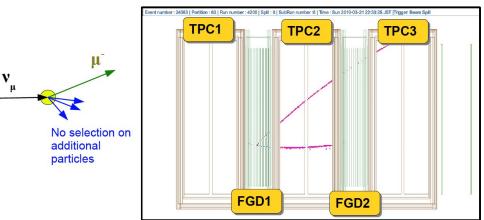
incertitudes syst. de 5-10% pour chaque point dans l'espace $p-\theta$


2.3% d'incertitude de normalisation

incertitudes propagées dans l'analyse d'oscillation

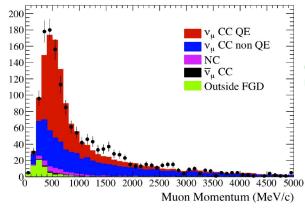

FLUKA reproduit assez bien les données de NA61

Prédiction du flux de neutrinos



- \bullet le flux de ν_{μ} autour du max de l'oscillation vient surtout des désintégrations de pions
- les ν_e intrinsèques du faisceau viennent des désintégrations de muons et kaons: \sim 1% en dessous de 1 GeV
- les ν_e dominants autour du max de l'oscillation viennent des désintégrations de muons:

Analyse inclusive des ν_{μ} dans ND280

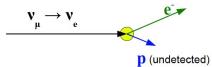

- ullet sélection des traces négatives $\mu-\mathit{like}$ démarrant dans un FGD et traversant les TPC
- grande pureté: 90% ν_{μ} CC et 50% CCQE
- 1529 événements

14/33

Analyse inclusive des u_{μ} dans ND280

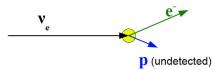
Données et prédictions MC pour $2.88 \times 10^{19} POT$

Comparaison avec le MC normalisé aux POT:

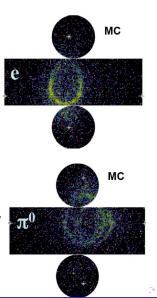

- modèle de flux NA61 et FLUKA
- modèle d'interactions neutrinos: NEUT

 $R_{ND}^{\mu,Data}/R_{ND}^{\mu,MC} = 1.036 \pm 0.028 (stat.)_{-0.037}^{+0.044} (det. sys.) \pm 0.038 (phys. model)$

15/33


Signal et bruit de fond à SK

Oscillation Signal:



Identical for given neutrino energy.

Beam v_e Background:

Beam background has harder spectrum

Neutral Current π⁰:

Can be removed by identifying second photon ring

N+others (undetected)

Sélection des ν_e à SK

On sélectionne un échantillon anneau unique de type électron single ring e-like et on minimise le bruits de fond faisceau et $NC\pi^0$ coupures optimisées pour la stat actuelle coupures fixées avant de regarder les données

Signal Efficiency = 66%
Background Rejection:
77% for beam v_e
99% for NC

Nb d'évts attendus rescalé par le rapport Data/MC mesuré à ND280:

$$N_{
m SK}^{
m exp} = N_{
m SK}^{
m MC} imes R_{
m ND}^{\mu, {
m Data}}/R_{
m ND}^{\mu, {
m MC}}$$

Sources	$N_{_{SK}}^{\ exp}$
NC background	0.6
Beam $\nu_{_{_{e}}}$ background	8.0
Osc. through $\theta_{_{12}}$	0.1
v_{μ} CC background	0.03
Total	1.5±0.3

Incertitudes systématiques

D'où viennent les incertitudes systématiques?

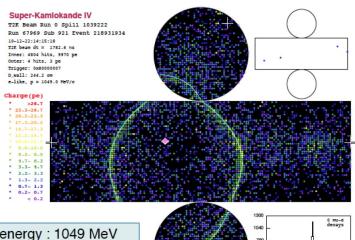
$$N_{\mathit{SK}}^{\mathsf{exp}} = R_{\mathit{ND}}^{\mu\,,\,\mathit{Data}} \times N_{\mathit{SK}}^{\mathit{MC}} / R_{\mathit{ND}}^{\mu\,,\,\mathit{MC}}$$
 Ignoring sums over neutrino flavors, interaction modes
$$\frac{\int \Phi_{v_{\mu}(v_{e})}^{\mathit{SK}}(E_{v}) \cdot P_{\mathit{osc}}(E_{v}) \cdot \sigma(E_{v}) \cdot \sigma(E_{v}) \cdot \epsilon_{\mathit{SK}}(E_{v}) dE_{v}}{\int \Phi_{v_{\mu}}^{\mathit{ND}}(E_{v}) \cdot \sigma(E_{v}) \cdot \sigma(E_{v}) \cdot \epsilon_{\mathit{ND}}(E_{v}) dE_{v}} \frac{M_{\mathit{SK}}}{M_{\mathit{ND}}} \cdot POT_{\mathit{SK}}$$

- ND280 statistical uncertainty
- Flux uncertainty → expect cancellation in ratio
- Neutrino interaction cross section uncertainties
- SK reconstruction, selection uncertainties
- ND280 reconstruction, selection uncertainties

Incertitudes sur le flux

Les incertitudes sur les interactions hadroniques dominent:

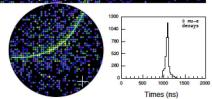
$$\frac{\int \! \frac{\boldsymbol{\Phi}_{v_{\nu}(v_{\nu})}^{SK}(\boldsymbol{E}_{v}) \cdot \boldsymbol{P}_{osc}(\boldsymbol{E}_{v}) \cdot \boldsymbol{\sigma}(\boldsymbol{E}_{v}) \cdot \boldsymbol{\epsilon}_{SK}(\boldsymbol{E}_{v}) d\boldsymbol{E}_{v}}{\int \! \boldsymbol{\Phi}_{v_{\mu}}^{ND}(\boldsymbol{E}_{v}) \cdot \boldsymbol{\sigma}(\boldsymbol{E}_{v}) \cdot \boldsymbol{\epsilon}_{ND}(\boldsymbol{E}_{v}) d\boldsymbol{E}_{v}}$$


- production de pions: inc. syst de NA61
- production de kaons: comparaison FLUKA vs données
- production secondaire de nucléons: comparaison FLUKA vs données
- ullet proba d'interactions hadroniques: de mesures exp. sur les sect. eff. de π , p, K

Percent Errors from Flux Uncertainties (θ₁₃=0)

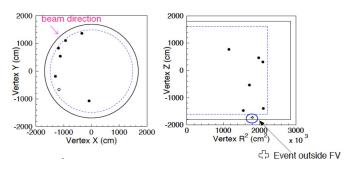
Error Sources	$R_{ND}^{\ \mu,MC}$	N _{sk} ^{MC}	$N_{SK}^{MC}/R_{ND}^{\mu,MC}$
Pion Production	5.7%	6.2%	2.5%
Kaon Production	10.0%	11.1%	7.6%
Other Hadron Int.	9.7%	9.5%	1.5%
Beam Direction, Alignment, Horn Current	3.6%	2.2%	2.3%
Total	15.4%	16.1%	8.5%

Cancellation works best for neutrinos from pion production


Exemple de candidat ν_e

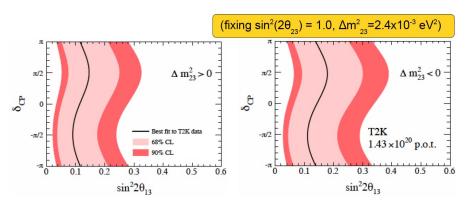
visible energy: 1049 MeV

of decay-e : 0

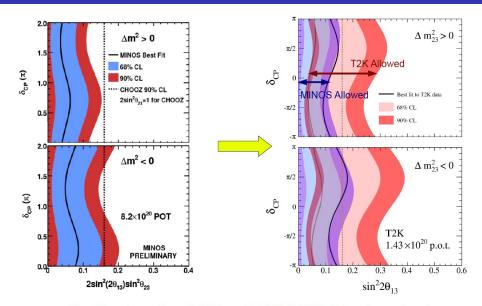

2γ Inv. mass : 0.04 MeV/c2 recon. energy: 1120.9 MeV

Distribution des vertex

Après la sélection des ν_e : 6 candidats


Rappel, bruit de fond attendu: 1.5 ± 0.3 évts

- test de KS sur la distribution en R^2 : proba = 0.03
- un seul évt en dehors du volume fiduciel et qui passe toutes les autres coupures (on an attendrait plus s'il s'agissait d'un bruit de fond corrélé au faisceau)
- les distributions d'évts dans l'OD ne montrent pas d'indication de contamination


Interprétation pour $sin^2(2\theta_{13})$

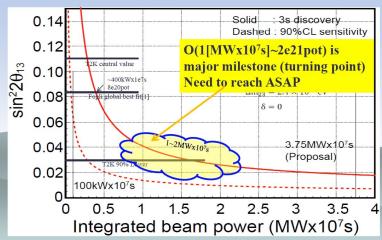
pour $sin^2(2\theta_{13}) = 0$ avec [$sin^2(2\theta_{23}) = 1.0$ et $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$] la probabilité d'observer $\geq 6\text{ evts} = 0.007$

à $sin^2(2\theta_{23}) = 1.0$, $\Delta m_{23}^2 = 2.4 \times 10^{-3} eV^2$, $\delta_{CP} = 0$ les intervalles à 90% de CL sont: normale: $0.03 < sin^2(2\theta_{13}) < 0.28$ inverse: $0.04 < sin^2(2\theta_{13}) < 0.34$ meilleur fit: $sin^2(2\theta_{13}) = 0.11$ meilleur fit; $sin^2(2\theta_{13}) = 0.14$

Comparaison avec MINOS

Significant overlap of T2K and MINOS 90% C.L. allowed regions

jdz (Ipnhe-Paris) T2K Biennale du LPNHE 19/09/11 23 / 33


Prochaines étapes pour T2K

Etablir solidement l'apparition de ν_{θ} et mieux déterminer l'angle de mélange θ_{13}

- redémarrer l'expérience
 - travail de réparation en cours
 - redémarrage de J-PARC, y compris les accélérateurs et le faisceau de neutrinos: décembre 2011
 - T2K sera prêt en novembre
- Améliorations de l'analyse
 - nouvelles méthodes d'analyse utilisant la forme du signal ν_e (e.g. l'énergie reconstruite)
 - utiliser les mesures de ND280 sur le spectre des ν_{μ} CCQE, sur les courants neutres et sur les sections efficaces
 - utiliser les données de NA61 sur les kaons et sur la cible longue (T2K replica target)

Expected sensitivity

T2K Expected sensitivities

Prochaines étapes

- ullet Première priorité: établir solidement que $heta_{13}$ n'est pas nul et déterminer sa valeur
- Aujourd'hui nous avons 70 $[kW \times 10^7 s] = 1.43 \times 10^{20} POT$
- à l'été 2013: $\sim 0.5 \ [MW \times 10^7 s] = 1 \times 10^{21} \ POT$
 - > 5 sigma pour la valeur centrale actuelle de T2K
- avec la statistique nominale de T2K: 3.8 $[MW \times 10^7 s] = 8 \times 10^{21} POT$
 - > 3 sigma pour $sin^2(2\theta_{13} > \sim 0.02)$

Implication on Future

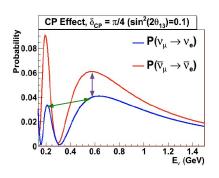
- si $sin^2(2\theta_{13}) > \sim 0.02$
 - une expérience d'oscillation à grande distance sur un faisceau "conventionnel" (super beam multi-MW tout de même) est envisageable pour rechercher la violation de CP dans le secteur leptonique
 - le design et la proposition d'une telle expérience est au programme de ces prochaines années
- sinon
 - il faudra des machines radicalement différentes (usines à neutrinos ou bêta-beam) pour recherche la violation de CP

Mesurer δ

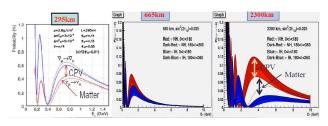
L'expression complète de la probabilité d'oscillation $\nu_{\mu} \to \nu_{\theta}$ inclue un terme proportionnel à $sin(\delta)$:

$$\propto sin\theta_{12}sin\theta_{13}sin\theta_{23}sin\delta$$

(\pm neutrino vs. antineutrino)


il faut que les 3 angles de mélange soient non nuls

2 façons de mesurer δ :


 comparer les probabilités d'apparition neutrino vs. antineutrino

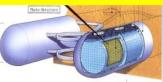
$$A_{CP} \equiv rac{P - \overline{P}}{P + \overline{P}} pprox rac{\Delta m_{12}^2 L}{E}.rac{sin2 heta_{12}}{sin heta_{13}}.sin\delta$$

 observer le 1er et le 2ème maximum d'oscillation en mode neutrino

Comment mesurer CPV et sign(Δ_{23})

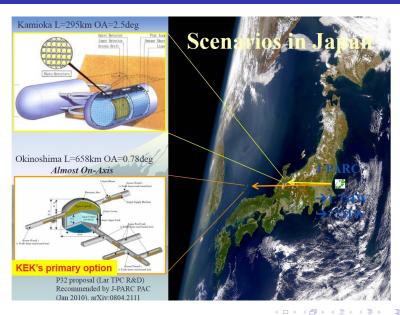
- ullet par la forme du spectre en énergie des u_e
 - la position du pic et la hauteur des 1er et 2ème max et min
 - permet de mesurer à la fois $sin\delta$ et $cos\delta$
- par la différence entre ν_e et $\overline{\nu_e}$
 - sensible à tout mécanisme qui introduit de l'asymétrie
 - ullet permet de essentiellement de mesurer le terme en $sin\delta$
- par la distance
 - longueur L plus grande \rightarrow effet de matière plus grands (MSW), sensible au signe de Δ_{23}

• longueur L plus petite (et $E_
u$ plus faible): mesure de CPV plus pure \circ

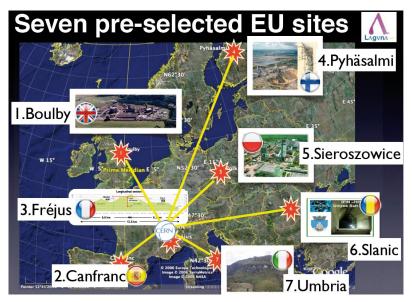

Available technologies

Liq Ar TPC

- Aim O(100kton)
- Electronic "bubble chamber"
 - Can track every charged particle
 - Down to very low energy
- Neutrino energy reconstruction by eg. total energy
 - No need to assume process type
 - Capable upto high energy
 - Good PID w/ dE/dx, pi0 rejection
- Realized O(1kton)


Good at low E (<1GeV) narrow band beam

Water Cherenkov


- ◆ Aim O(1000kton)
- Energy reconstruction assuming Ccqe
 - Effective < 1GeV
- Good PID (μ /e) at low energy
- Cherenkov threshold
- Realized 50kton

Scenario possible: Japon

31/33

Scenario possible: Europe (projet LAGUNA)

32 / 33

LPNHE

Pour ces projets à long terme ... et pour les projets à plus court terme visant à tester l'hypothèse des neutrinos stériles (induite par les résultats de LSND, MiniBooNE, combinaison avec les solaires ...) - 2 propositions au CERN: Rubbia vs Rubbia -

- la maîtrise du faisceau est essentielle
- NA61 et un outil de simulation générique (VMC rodé sur T2K) sont d'un apport précieux

C'est notre contribution actuelle

Discussions et contacts pour des développements sur l'argon liquide (le détecteur favori de la prochaine génération d'expériences).