Biennale du LPNHE 19 septembre 2011

SuperB

- Introduction
- Le projet
- Activité au LPNHE

Eli Ben-Haïm

The Super Flavor Factory "SuperB" in brief

- A very high luminosity (>~10³⁶cm⁻² sec⁻¹) asymmetric e⁺ e⁻ flavor factory \Rightarrow (BaBar) $\times \sim 100$; integrated luminosity of 75 ab⁻¹; peak: 10^{36} cm⁻² s⁻¹ thanks to a new accelerator scheme ("crab waist")
- B-factory-like detector, optimized for some key measurements.
- Two such projects were approved:
 - the Italian "SuperB"
 - the Japanese "Belle II" in KEK
- A few points about the SuperB design
 - Different energy thresholds (B \overline{B} τ -charm..) Unique to SuperB
 - Polarized e⁻ beam (at 80%)
 - Comparing to the first generation B-factories (BaBar and Belle)
 - The detector is more "hermetic"
 - Smaller boost and better vertex detector
 - Need to cope with much higher luminosity and backgrounds

Optimized to measure rare decays

A discovery machine? In the LHC era?

LHC: search for NP @ ~ 1 TeV

Flavor factory :		
10 ³⁴	\leftrightarrow	EW scale ~100GeV
10 ³⁶	\leftrightarrow	TeV scale

- If NP particles are discovered by the LHC, SuperB will study the flavor structure of the NP
- SuperB explores the NP scale in a complementary way to (and sometimes beyond the reach of...) the LHC.

Eli Ben-Haim

CS du LPNHE, 18 novembre 2009

Golden modes: comparison to other experiments (I)

Golden modes: comparison to other experiments (II)

For CKM parameters:

More in a seminar (coming soon)

Project: status and news (I)

- 2010: 3 SuperB progress reports accelerator, detector, physics
- December 2010: project approbation in Italy
- May 2011: "Kick-off" meeting in Elba
- Last week: first SuperB collaboration meeting in London The collaboration is created...

"INFN and the University of Tor Vergata had signed an agreement and written a governance document to form a Consortium, and will be joined by IIT and the Science Ministry. This Consortium will manage a new laboratory – the Nicola Cabibbo Laboratory – to design and build a high luminosity electron-positron collider, and support an exciting science program of High Energy Physics and Photon Science."

Project: status and news (II)

The civil engineering company under contract to the university will undertake the initial work, and expect to be awarded the contract to proceed with the actual ground-breaking. There will have to be a validation of the collider footprint and machine design, before ground-breaking can start. Eli Ben-Haim SuperB au LPNHE

Project: status and news (III)

- Minister of Science now needs to sign the Governance document, and then the Council can propose the Directorate members, to be appointed by the Minister.
- Then there will be a management in place, the budget becomes available, and activities can proceed.
- Presentation to the IN2P3 Scientific Council October 20th.
- April 2011- Accelerator and detector <u>Technical Design Report (TDR)</u> (Computing TDR ~a year later)
- First collisions expected for 2016 or 2017

Au LPNHE

Participants: M. Dhellot, Y. Guo, H. Lebbolo, (S. Sitt), EBH

Participation aux activités du TDR: conseil scientifique de novembre 2009

• Contribution au TDR de physique ($B^0 \rightarrow K_S K_S K_S$) (S. Sitt, EBH)

SuperB au LPNHE

Prospectives for B^0 \rightarrow K_S K_S K_S (I)S. Sitt, EBH

- The study was done with simulated SuperB events.
- It included:
 - A study of the effect of beam backgrounds
 - Comparison of the measurement with different detector geometries
 - Study of the effect of the reduced boost (wrt BaBar) of feasibility of the time-dependent measurement
 - Estimation of the SuperB uncertainty (next pages...)

Prospectives for B^0 \rightarrow K_S K_S K_S (II)S. Sitt, EBH

- Right now the statistical error dominates the total uncertainty. With increased statistics (~20 x BaBar), the systematic uncertainty will dominate.
- We use toy studies to estimate how the total error can be reduced at luminosities expected at SuperB
- The most **straight-forward way** to reduce systematic uncertainties is to **free parameters** that have been fitted on simulation or are taken from other measurements (This increases the statistical error).
- Systematics from backgrounds from B decays can be reduced by better knowledge of their BF and CP content (we assume 10%-measurements for the exclusive contributions in the future). For sizable contributions (in particular the generic component) the S and C parameters can be allowed to vary in the fit.

Prospectives for B⁰ \rightarrow K_S K_S K_S (III) ^{S. Sitt, EBH}

SuperB au LPNHE

SuperB au LPNHE