La recherche du boson de Higgs au Tevatron

Yuji Enari

21 Sep 2011 LPNHE Biennale 2011

- 19 pays, 74 instituts, ~ 550 chercheurs.
 - D0 France: \sim 50 chercheurs.
 - LPC, LPSC, CPPM, LAL, LPNHE, IPHC, IPNL and CEA
 - Spokespersons: D. Denisov & G. Bernardi (depuis le mois dernier)

DZero au Tevatron, Fermi Lab

Y. Enari 3 SM Higgs Search at TeV

Y. Fnari Une petite histoire qui m'est arrivée SM Higgs Search

at TeV

- Officer: Why you come to US?
- Me: I'm researcher, working on particle physics....
- Officer:

LPNHE

- Me: It's high energy experiment at Fermilab....
- Officer: Low Mass HIGGS?!
- Me: Yes, yes, yes! That's right! Why do you know my work?!

Officer: Ha Ha ha!

Même un douanier connait le Higgs!!

- Le Modèle Standard décrit des particules massives...
- Grâce au mécanisme de Higgs!
- Mise en évidence expérimentale
 Nécessite l'observation ou l'exclusion

Recherche du Higgs au Tevatron

- Première exclusion autour de 160 GeV (2010)
- Exclusion à basse masse jusqu'à 108 GeV

SM Higgs excluded @ 95% C.L. 156 < m_H < 177 GeV obs (148 < m_H < 180 GeV exp) 100 < m_H < 108 GeV obs (100 < m_H < 109 GeV exp) ATLAS: exclu MH>146 GeV CMS: exclu MH>145 GeV

Recherche à basse masse avec $H \rightarrow bb$ est cruciale.

6

Y. Enari

SM Higgs Search at TeV

- pour mesurer le rapport d'embranchement
- Difficile au LHC

Contribution a la limite

Y. Enari 7 SM Higgs Search at TeV

• 95% CL Limits pour chaque analyse (2011)

	MH=115 GeV H→bb		MH=165 GeV H→WW			
mode	llbb	lvbb	vvbb	ee	еμ	μμ
Obs.	4.9	4.6	3.2	2.6	1.1	2.2
Exp.	4.8	3.5	4.0	2.1	1.3	2.2
D0 comb.	Obs: 1.8 Exp.: 1.9			Obs.: 0.7 Exp.: 0.9		
TeV comb.	Obs: 1.2 Exp: 1.2			Obs.: 0.5 Exp.: 0.6		

LPNHE: a la tete de l'analyse lvbb,

 \rightarrow meilleur resultat a basse masse.

forte contribution dans la combinaison D0/TeV

Y. Enari 9 SM Higgs Search at TeV

W. O Lot

W+2jets @ 10 fb⁻¹:

- Signal attendu: 100 evenements
- Bruit de fond attendu: ~ 1.2 M evenements
 - → Bonne modélisation du bruit de fond nécessaire
 Le groupe a passé beaucoup de temps pour comprendre
- et modéliser le bruit de fond.

^q Strategie:

<u>q</u>

- 1. bonne compréhension du bruit de fond
- 2. erreurs systématiques
- 3. augmenter la sensibilité.

×10³

Background understanding

Y. Enari 10

SM Higgs Search at TeV

- 1. bonne comprehension du bruit de fond
- QCD estimation
 - Estime avec les donnees.
 - lepton fake rate est cruciale.
- Modèle W+jets
 - ALPGEN modeling.
 - Reweight Monte carlo aux donnees.
- bID:
 - Correction & Usage de l'information bID
 - Optimisation

Erreurs systématiques

11 Y. Enari

SM Higgs Search at TeV

bID, Signal WH

Source	W→ev	W→µv	J. Brown	, Y Enari	
Luminosité	6.1	6.1	- Normalisation		
Section efficace b.d.f.	6-20	6-20			
Lepton ID/Trigger	2-3	3-5	1		
Jet ID	1-2	1-2			
Jet Energy Scale	2-5	2-5			
bID	9-11	9-11	WHevbbRunllb 1tag,2Jet Signal Shape systematic: bTag_HF		
Bruit de fond Multijet	1.0	1.0	ertainty		
PDF, Modélisation MC	2-3	2-3			
 Evalue pour chaque bruit de fond. ~ 60 variations de forme pour un 					
point de masse.	Variation ±1σ de l'eff	cacité du /H			

Augmenter la sensibilité.

Y. Enari 12 SM Higgs Search at TeV

- Developpement trigger inclusif
 - Gain de l'efficacite de trigger : 20 %
- Jet energy resolution J. Brown
 - Beaucoup d'essais pour ameliorer la resolution de la masse invariante.
- Analyse multivariées J. Brown
 - Nouvelles variables et optimisation

Comment avoir plus de signal lvbb?

- Changement des critères d'identification des leptons
 - DØ muon

LPNHE

- Critères relachés pour le muon
- Mise à jour des conditions d'isolation
- Utilisation de tous les termes trigger
- DØ Electron
 - Critères relaché
 - Optimisation de la rejection Multi-Jet (MJ) au lieu du veto WtrMass > 40 – 0.5 MET

gain de ~ 15% sur l'efficacite muon.

gain de ~ 15% d'efficacité du signal pour le même taux de Multijet.

Y. Enari 13 SM Higgs Search at TeV

Résultats DØ

- Bruits de fond dominant: W+bb et top.
- On constate une amélioration de 10 % au-delà de la luminosité.
- Meilleure sensitivité a Dzero a basse masse.

CDF Bump W+2jets

Y. Enari 15 SM Higgs Search at TeV

CDF:

- Avril 2011 : 3.2 s.d. bump a 144 GeV, σ=4 pb — Publie dans PRL
- Mai 2011 : preliminary a Blois 2011
 - Plus grande significance : 4.1 s.d. avec 7.3 fb⁻¹.

Seminaire par A. Annovi at LPNHE en avril 2011

D0 result on Bump W+Jet

Y. Enari 16 SM Higgs Search at TeV

- Juin 2011: Resultat DZero (PRL)
 - No bump a ~ 144 GeV
 - Exclu 4 pb @ 144 GeV a 95 % CL.
- Le directeur de Fermilab a lance une task force.
 - Il semble que la Jet energy scale pour les jets de gluon ne soit pas traitee correctement.
- Contribution du LPNHE (Greg en temps que Phys. Coordinator)
 - Yuji participe a la revue interne de l'analyse de D0

Contribution du LPNHE

Y. Enari 17

SM Higgs Search at TeV

Nom	Responsabilites	Talks
G. Bernardi	Phys. Coordinator (2009-2011) Dzero Spokes (2011-)	Lepton Photon 2009, Susy 2011
J. Brown	Ph.D Thesis (2011)	APS 2010, Lake Louise 2011
D. Brown	QCD EB chair (-2010) Clued0 Admin. (2010-)	Blois 2010, DPF 2011
Y. Enari	Clued0 Admin (-2010), D0 AC Chair (2010), Low Mass Higgs Conv. (2009-2011)	Moriond EW 2009 ICHEP 2010 Higgs Hunting 2011
N. Huske	Ph.D Thesis (2010)	Higgs Hunting 2010
D. Li	Ph.D Thesis (2013)	

Publication: WH search 1.0 fb⁻¹: Phys. Rev. Lett. 102, 051803 (2009) WH search 5.3 fb⁻¹: Phys. Lett. B 698, 6 (2011) Preliminary result: 2009 Winter, 2009 Summer , 2010 Summer, 2011 Summer.

Conclusion

Y. Enari 18 SM Higgs Search at TeV

- Le LPNHE est fortement impliqué dans le programme Higgs au Tevatron
 - Particulièrement pour le mode $H \rightarrow bb$
 - Nous sommes les contributeurs principaux
 - Impact fort dans la combinaison
- Futur
 - Arret de la prise de donnees la semaine prochaine.
 - Big party!
 - Statistique finale de 10 fb⁻¹
 - Continuer dans la recherche $H \rightarrow bb$
 - Pour mesurer les propriétés du Higgs
 - − VZ \rightarrow lvbb est un objectif à court terme
 - Beaucoup d'améliorations seront apportées à l'été prochain

Résultats DØ

Y. Enari 20

SM Higgs Search

at TeV

Gain de 10% au-delà de la luminosité

Y. Enari 21 SM Higgs Search at TeV

- Désintegration du Higgs
 - Comme le top est trop lourd, la paire bb est la plus lourde à basse masse (MH<<2xM_{top})
 - Mode de désintegration dominant dans la région MH<2xM_w
 - − La découverte du mode H→bb mode est essentielle pour établir le MS.

Production du Higgs standard

Y. Enari 22 SM Higgs Search at TeV

- Section efficace la plus grande: gg→H J'ai besoin de ca???
 Le Higgs se desintègre en bb dans la région à basse masse
 - − → Bruit de fond multi-jet trop grand, presque impossible
- Production associée W ou Z à basse masse
 - Lepton de grand pT avec la désintegration $H \rightarrow bb$.

Three Channels with $H \rightarrow b\bar{b}$

Y. Enari 23 SM Higgs Search at TeV

CDF and DØ Detector

SM Higgs Search

General purpose detector Good hermeticity

Rapidity coverage					
	CDF	Dzero			
Track	2.0	2.5			
Cal (EM,HAD)	3.6	4.0			
Muon	1.0	2.0			
B-field	1.4 T	2.0 T			

New feature on DØ b-tagging

Y. Enari 25

SM Higgs Search at TeV

- MVA tagger
 - Better performance
- Modeling
 - Update on TRF, Fake rate measurement
 - Systematic uncertainty reduced by 50% on fake rate.
- Usage
 - Application of TRF
 - Use all operating point.
 - Use shape of bID MVA output the final MVA
 - Two orthogonal sample
 - 2 b-tag: both jet pass Loosest tag
 - 1 b-tag: one of jet pass Loosest tag

- ALPGEN+PYTHIA is used in both CDF and D0.
 - DØ analyses apply reweighting from extracted from data to V+Jets monte carlo.
 - Lepton |, Jet |, angle between jets, W pT
 - Consistency check between lepton, data epoch, final state, etc..

b-Jet Identification

Run 227895 Evt 117967657 Wed Nov 22 16:59:06 2006 Run 227895 Evt 117967657 Wed Nov 22 16:59:06 2006 ET scale: 18 GeV Vertex Tagging (transverse plane) View 1, Front(X-Y) (Signed) Track Impact Parameter (dca) Decay Length (L_{xy}) Hard Scatter

MVA usage @ CDF/D0

Y. Enari 28 SM Higgs Search at TeV

- D0 analyses often use BDT with TMVA
 - "Stochastic gradient boosting" seems to be good.
 - Matrix Element analysis: takes time, not processing recently.
- CDF analyses use various MVA
 - BNN, NEAT, NN, Support Vector Machine,
 - NN is often used in the corrections (dijet mass, trigger turn-on)
 - Proceed Matrix Element analysis (not this summer)
- Key feature / Trend
 - Trying to reduce number of input variable
 - Trying to find optimal usage

An interesting example from DØ lvbb

== Build MVA in order to choose input variable ==
 MVA for ttbar vs WH and MVA for Wbb/cc vs WH
 → Use the union of the

mos<mark>t powerful</mark>

14 variables of two MVAs for final MVA

Background and Signal

Y. Enari 29 SM Higgs Search at TeV

• Cross section at $\sqrt{s} = 1.96 \text{ TeV}$

Check on the excess: signal injection ^{Y. Enari 30}

at TeV

 Inject expected signal event of MH=115 GeV and check how limit curve look like.

LPNHE

- With current luminosity, we suppose to have < 1 sigma excess in wide range due to mass resolution.
- Looks consistent what we observe in MH~ 130 GeV.

