Production de photons directs (γ inclusif, γ+jet, γγ) au LHC

Sandrine LAPLACE pour le groupe ATLAS

Biennale du LPNHE, 19-22 septembre 2011

La production de photons au LHC

La production de photons au LHC

Sujet de cette présentation: section efficace de production de γ inclusif, γ +jet, $\gamma\gamma$

La détection des photons dans ATLAS

Ω

L'identification des photons dans ATLAS

But de l'identification: distinguer les vrais photons des «faux» photons (jets) et des photons issus de π^0 , η (Note: les photons convertis sont aussi pollués par les électrons)

		vrai photon	faux photon (jet)	π ⁰,η→γγ
calo EN	1	dépôt étroit	dépôt large	deux photons dans un même amas
calo HA	D	pas de dépôt	dépôt	pas de dépôt

Utilise la segmentation latérale et longitudinale du calo EM pour les distinguer:

→ Critères de sélection «Loose» (lâche) et «Tight» (dur)

L'isolation calorimétrique

Variable supplémentaire pour rejeter le bruit de fond: isolation calorimétrique définie comme l'énergie contenue dans un cône autour de l'amas du photon

 \rightarrow on mesure la section efficace de production de photons directs ISOLÉS

(note: réduit aussi la composante de fragmentation du signal...)

En fait, plus compliqué que ce simple schéma:

• Effets expérimentaux à corriger événement par événement:

• photon direct dépose aussi de l'énergie dans le cône d'isolation

- effets d'empilement et de l'événement sous-jacent
- Difficulté supplémentaire pour les prédictions théoriques

Mesure de la section efficace différentielle de production d'1 ou 2 photons

Traduction:

- Section efficace (σ): probabilité de produire 1 ou 2 photons directs dans une collision pp au LHC
- Différentielle: en fonction de certaines variables X (par exemple, l'énergie du photon)

Etapes (simplifiées): pour chaque bin de la variable X,

- Sélectionne un lot de candidats de photons identifiés «tight» et isolés (Ntot)
- Soustrait le bruit de fond («faux photons», Nbkg) de ce lot: reste un lot de candidats photons «pur»
- Renormalise ce lot de photons par l'efficacité (ε) des coupures de sélection et la luminosité (L)

$$\frac{d \sigma}{d X_{true}} \stackrel{}{\leftarrow} \frac{N_{tot} - N_{bkg}}{\epsilon L(\Delta X_{true})}$$

• Migration: effets de résolution \rightarrow photon produit dans bin «X_{true}» reconstruit dans bin «X_{reco}»

Soustraction des bruit de fond (1/2)

5

Matrice: $(\gamma\gamma)$

ATLAS

 $\epsilon_1 f_2$

 $\epsilon_1(1 - f_2)$

 $(1 - \epsilon_1)f_2$

vs = 7 TeV, Ldt = 878 nb"

 $f_1(1 - \epsilon_2)$

 $(1 - f_1)\epsilon_2$ $(1 - \epsilon_1)(1 - f_2)$ $(1 - f_1)(1 - \epsilon_2)$ $(1 - f_1)(1 - f_2)$

 $f_1 f_2$

 $f_1(1 - f_2)$

 $(1 - f_1)f_2$

- Utilise la variable d'isolation calorimétrique (ETisol)
- Sépare les composantes de signal ($\gamma\gamma$) et de bdf (γ j et jj) par 3 techniques différentes:

• Mesure la contamination des électrons identifiés à tort comme des photons avec une technique de matrice

1

Soustraction des bruit de fond (2/2)

mardi 20 septembre 2011

ATIAS

Théorie

- Comparaison avec les calculs théoriques les plus précis existant:
 - «Next to Leading Order» (NLO): calcul au 2ème ordre (O(α_s)), i.e. tient compte de l'émission réelle ou virtuelle d'un gluon/quark supplémentaire:

- Deux programmes principaux: RESBOS (γγ) et PHOX-family (JETPHOX pour γ+jet, DIPHOX pour γγ)
 - Note: ne sont pas de vrais générateurs MC (i.e. non interfacés avec la gerbe partonique) mais des calculateurs de section efficace
 - Quelques différences entre les deux programmes (RESBOS: resommation NLL, DIPHOX: fragmentation à NLO, ...)
- [pas encore utilisés au LHC] vrais générateurs MC avec émission réelle de jet(s) supplémentaire(s) («partie réelle» du NLO) tels que SHERPA, HERWIG++/POWHEG: pour les prochaines publications...

12

mardi 20 septembre 2011

Section efficace

en fonction de l'énergie du photon

Production de l photon + l jet

Mode exclusif intéressant pour:

• calibrer l'énergie des jets (qui doit contrebalancer celle du photon qui est bien reconstruite)

• contraindre la fonction de densité du gluon dans le proton

Production de 2 photons

Qui et quoi ?

- Qui ? Marine Kuna, Bertrand Laforge, Sandrine Laplace, Giovanni Marchiori, Irena Nikolic, José Ocariz, Lydia Roos, Heberth Torres, Li Yuan, ...
- Quoi ? 5 publications
 - Inclusive photon
 - 880 nb⁻¹: Phys. Rev. D 83, 052005 (2011) Editeur: Giovanni M.
 - Données de 2010 (35 pb⁻¹): soumis à Physics Letter B
 - Diphotons:
 - 35 pb⁻¹: soumis a Phys. Rev. D Editeur: Sandrine L.
 - Données de 2011: groupe du LPNHE est leader
 - Photon + jet:
 - 35 pb⁻¹: en cours Editeur: Giovanni M.

Conclusion

- Le groupe du LPNHE est très impliqué dans la mesure des sections efficaces de production de photons directs (éditeurs de la majorité des publications sur le sujet !)
- Ces mesures sont importantes:
 - pour améliorer la compréhension de la théorie QCD dans son régime perturbatif: les mesures montrent des désaccords avec les prédictions dans certaines régions (photon de basse énergie, faible masse invariante γγ)
 - permettent de bien comprendre les performances du détecteur (identification/isolation des photons, et pour γ-jet: énergie des jets, ...)
 - permettent de bien comprendre les bruits de fond pour la recherche du boson de Higgs ou de signaux de nouvelle physique

Un regard critique sur la recherche du Higgs

Deux séminaires par Witek Krasny ce vendredi 23 septembre:

I. LPNHE (matin - réunion du vendredi) **The "never-ending"? story of the SM Higgs particle.** («L'histoire sans fin du Higgs»)

2. LPTHE (après-midi)

"Precision Measurements" programme for the LHC - Are we willing/ ready to overhaul the present LHC research paradigms and methods?

(«Mesures de précision» au LHC: la communauté est elle prête a améliorer les méthodes et paradigmes actuels du programme de recherche au LHC ?)

BACKUP

Comparaison avec les résultats du Tevatron et CMS

2 photons - $m(\gamma\gamma)$ - Tevatron

2 photons - $m(\gamma\gamma)$ - CMS

2 photons - $pT(\gamma\gamma)$ - Tevatron

2 photons - $\Delta \Phi(\gamma \gamma)$ - Tevatron

2 photons - $pT(\gamma\gamma)$ - CMS

