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There is a sharp contrast between rather simple and direct few-body BOUND-
STATE CALCULATIONS and very tedious SCATTERING CALCULATIONS even
for a three-body case.

The theoretical groups of Bochum and Hannover are nearly the unique in the world
who are able to make fully realistic 3N scattering calculations above 3N-breakup
threshold at energies E,~30-300 MeV using completely realistic 2N and 3N
Interactions.

Why?

There are several reasons, but the main one is a very complicated way in
numerical treatment of Faddeev equations with proper account of 3N forces
well above the 3N-breakup threshold.
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Let’s illustrate this by Faddeev equations for three identical bosons
(from H. Liu, Ch. Elster and W. Gloeckle)

Faddeev equation in Jacobi momenta variables has the form
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For clear illustration we consider the case of simple s-wave interactions

using the reduction scheme of Ahmadzadeh and Tjon:
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Rewriting the 6 function in terms of cosB,,:
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Now, we’ll make the integration over cos0,, in eq. (24)
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It follows from the Eq. (27) that three-body wave functions TS in right- and left-
hand sides are given in different sets of coordinates:

Y. p,,q, vs Y. pQ
So, when iterating the Eq. (27) we must interpolate at each iteration step:

Y, ppg = Y p,.0,
at every coordinate mesh-point! This leads to many thousands, or even many
hundred thousands multi-dimensional interpolations at every interpolation step!!

These difficulties get much worse when treating the general three-nucleon case
of many coupled partial waves.
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Partial-wave reduction for the three-body Faddeev equations
(E.P. Harper, Y.E. Kim, A. Tubis, PRC, 2, 877 (1970).)

The nonrelativistic three-particle scattering ma-
trix T for particles of mass m,, m,, and m, can
be decomposed as''®

T=TW 4 7)) 4 7(3) (2.1)
The T()’s satisfy the Faddeev equations
T (s)=Ty(s) - E. T,(s)G,(s)T Y (s), i=1, 2, 3.
T (2.2)

G,(s) is the three-particle Green’s function
G,(s)=(H,-s)™", (2.3)

(H, being the three-particle kinetic energy opera-
tor), s is the total energy of the three-particle sys-
tem, the T7;’s are the off-shell two-body 7-matrices
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Partial-wave expansion for three-body plane waves:

lp,q, @); =|p, q, a(i,jk));= |[p(LS,qs)y98,; (THTT,);
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The Faddeev equation, in the J-j coupling scheme, becomes

1)
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except .. d,,)
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The final result for the integral part of the Faddeev equation (4.6) is
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where G, _; is the geometrical factor given by
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Thus, let's summarize the numerical problems in solving FEQs.
. Variable integration limits.

. Moving branching points in equation kernels.

1
2
3. Complex deformation for path of integration.
4. Multi-dimensional interpolations.

How to avoid these problems?

It is evident that these problems cannot be avoided by the conventional
approach. We need to use essentially different representation for
scattering operators and wavefunctions.

So, we need a principally new way!!

14



In this new way we want to use the highly effective and very fast GPU-
computations (i.e. computations via ultrafast graphical processors).

So, we should transform the multi-dimensional integral equations into a form
convenient for graphical-processor treatment, i.e. to a pixel-like form.

We may use a transformation which is similar to well-known transformation from
analog to discrete (pixel) digital images, e.g. in a movie production.

Thus, in our discrete scattering theory, we have discrete matrix functions Kij

J

instead of original continuous kernel function K(p,().

The value of every ‘pixel’ Kij is a result
of integration and some averaging for
initial integral kernel around the point

(P:.q;)- i ,

15
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Stationary wave packets and their properties

Discretization of the free Hamiltonian H, continuum

Ai
e T
Eo 1 Ei-1 Ei * éi EN
|
Discretization of momentum: ¢; = v/2mkFE;.
Plane waves:
Stationary wave packets: <¢0q|¢0q'> =d(q - q')
By} dg, 2=1,...,N.
| \/ i Jgi_ (@oa)da ‘Energy’ packets
: . 4 y _q
fi(q) — weight functions. B; = / | | fi(q)|"dq. flg) = = E-packets | X;)
R Bi=Ei— Ei.1 = A
Wave packets form an orthonormalized set:
N
iley) =0y, Ps= Z; |z;) (z;|— the projector. ‘Momentum’ packets
: . . _1q
Matrix of any operator R(Hy) is diagonal: f(q) B } q-packets |z;).
% [* 5 e o Bi=gi—g¢i-1=4d,
| R(H — :
lrm)l) =3 [ R () P
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Behavior of WPs in configuration space

X (r) = Jd.w, (', r)

sin d.r/2
dr/2

Coordinate behavior of wave packets for different ratios of

X;(r)

their widths to their momentum eigenvalues di/qi*

® 4 [025 (@)

— =10.1 (b);
o] 10.05 (c).

(b)

The smaller wave-packet width
corresponds to slower decrease
of its wavefunction at the
asymptotics.

(©)

50

100

*150 200 250
g, r
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Momentum representation

: ) xi(a) 1
Bilg) = <q_Qi_1\>/d:i (q_Qi), i=1,...,N. — <— d;
The basis element X; looks like
a rectangular impulse. : >
Qi1 Qi q

N
By applying the projector IP = Z| Xi><Xi | to any function continuous over (,

i=1
one obtains

X 1 LIJdisk(q)
\wd'3k>zmw>=§ci %)

_LH
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Now one can project the Schroedinger equation onto such a lattice space and
come to purely matrix problem

TH ‘ LPgisk> — ESisk

), [rae H=PHP,

Vi) =P|W)

Wave function of bound state for model problem
I ) | ] I I | I |

04 H

-0.6

0.8 —

—— "Exact" function {Gaussian basis, E=-5.42)
— Wave-packet function (N=50, E=-5.38)
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Two faces of the wave-packet basis

m The WPB can be considered as orthonormalized
localized’ plane-wave basis which is ideally suited for
scattering calculations.

m On the other hand, we can consider this complete L,-
basis as appropriate basis for conventional variational
calculations like Harmonic oscillator or Gaussian bases.

20
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Wave packets as a basis for variational solution
N

Diagonalization procedure: [z) = > Cpnlzn)  — det ||Hpy — Edp|| = 0 {Chn, Ep}]]gv_l
=l N
T | T | I | I | !

Wave-packet pseudo- MTIII potential
states with positive

energies are very close 0317 |
to exact scattering

wave packets i
(corresponding to the N M
total Hamiltonian). This o 1 7 A@L

roperty takes place | SN /
property P —= %J__&%

In asymptotic §
. \_/
region as well.

0.5 —

r, fm 21



i i | i i i i i i
023 o0 200 300 400 500 600 700 SO0 900 1000
r, fm

The coordinate behavior of several wave-packet states for the MT-III NN potential
found by the diagonalization of the Hamiltonian matrix on the free wave-packet

hasis.
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Wave-packet basis in the Coulomb scattering problem

Wave-packet functions decrease very slowly, so this basis is ‘long-ranged’ and
thus is very convenient for approximation of continuum states.
This is also valid for the long-range potentials.

—— pseudostate
: 0.07 — Coulomb WP
It is well known that exact el — # s

wave functions of the Coulomb 883

Hamiltonian continuum cannot be 0.03F

expanded over exact plane waves < (ol
because of the infinite radius of the " 88(1)

Coulomb force. -0.02f
But we found that Coulomb 0!
wave-packets can be expanded over -0.05¢

finite set of free wave packets!

Thus, the projection onto the ggj e SR
wave-packet representation is an 002k
effective way for the regularization of & .|
the Coulomb singularities. "
-0.041
-0.061

008707200 400 600 800 1000
r, fm 23
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Formulation and solution of three- and few-body scattering

problems in the wave-packet representation

(All formulations and calculations in this part have been done
jointly with my coathors: O.Rubtsova and V.Pomerantsev)

Total Hamiltonian:

= Hy+ Ve +%+ Ve
Channel Hamiltonian:
H,= Hy+V, = hy ® hg.

Channel wave-packet basis:

|Sa, AM) = | Z{, X}, AM).

In general few-body case, WP basis should be constructed in each
Jacobi coordinate set via direct production of each subsystem WP
bases. Such a basis consists of eigenstates of each channel
Hamiltonian.

Lattice representation leads to a complete few-body continuum

discretization.
24
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This original approach includes a few basic moments.

— Discretization of the whole momentum space (in two Jacobi mo-
menta) into rectangular cells.

— T he set of such two-dimensional step-like functions forms a com-
plete discrete basis which we use to expand the unknown solution
and also the integral-equation kernels.

— As a result of such wave-packet discretization we get one simple
matrix equation with regular matrix elements.

— In this approach the matrix elements for the multi-channel resol-

vent entering the intearal kernels are expressed via simple analytical
formulas.

25
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General three-body problem in the Faddeev framework

Faddeev expansion of the total scattering wave function:

[W(E)) = [pY) +[9®) + [9).
Faddeev equations for the components:
) = P01 )0 + GaVa Y 19, a=1,2,3.

b#£a
F.-d. approximation for each Faddeev component:

@y =3 0418y, a=1,2,3.
1k

F.-d. equations for the 'packetted’ Faddeev components

@) = |S§1001 + GaVa Y Buld®), a=1,2,3.

b#a
The main advantage here is the finite-dimensional representation for the
few-body channel resolvent: N
G.=Y G,(E) , [S.)(5.
Sa

26
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The permutation operators in the wave-packet basis

The permutation operators can be expressed in our complete three-body
wave-packet basis as:

By = 3 15959150 (5%,

ik k!

where <S¢(1?)|S¢('12'> = <Zi7$k7 (a)|zi’axk’a (b)>

Using expansion of scattering WPs on a free wave-packet basis

=) Gl
J

one gets: zk |S’k’ Z C iU], L, \A ( )|xj’7 Lk, (b)>
/

these matrix elements are
independent on energy

and interaction
27
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Computation of the permutation operator
In the wave-packet basis

The wave function of the three-nucleon sys-
tem is expanded in partial waves, using (jj)-coupling. For fixed
values of the total J and parity, this expansion leads to a system of
N coupled equations for channel Faddeev components of the wave
function (or amplitudes) with N =5 — 34,

Each channel is characterized by the following quantum numbers:

k= {E!S!j!A!I!t! T! J}!

where [ is orbital angular momentum of a nucleon pair; s is spin of
the pair; }' = f—l— 5 is the total angular momentum of the pair; A
is the orbital angular momentum of the third nucleon with respect
to the center of mass of the pair; I = )_f—l— 1?2 is the total angular
momentum of the third nucleon; t is isospin pair (I+ s+t is odd);
T is the total isospin and J is the total angular momentum of the
system.

28
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One of the main difficulties in solving the FEs related to the structure
of the matrix elements of the permutation operator P. In the plane-
wave basis this matrix element is:

N, —HE(I_T’T}ﬁ( — )
(P \Plpga) = [ =

G, o (d g z)dz, (1)

where
/o 12 / e 2 I
™ =\Vq +q /4+qq'z, ™ =\q +q°/4+ qq'z; (2)
f
vald ax) = 3 g2ty ip )it =1 b =1,
1,0k
(3)

r is the angle between the vectors q and q', P. is the Legendre
zlzlk . -
polynomial and g, are geometrical coefficients.

29
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Using the equation &(p — 2) = 2pé(p? — 22) and removing the in-
tegral over z in (1) one gets the following representation for the

permutation operator:
rr _ 4 12 12 2 Dy
(p'q'a'| Plpgar) = qq,pp,ﬁ(p +3/49" — (p°+3/4¢))v(1 —[z) (4)

x 3 Flilk(p o, q.q)gh "k (5)
4,1k

Here, the angle = is a function of three momenta, e.g., p,q,q":

2 12 2
pc—q —qg°/4
- ml s (6)

qq

£Zr

Functions Fgailk(p,pf,q,qf) are the homogeneous functions of mo-
menta and can be reduce to the following form:

N N g\ T
S q q\ (q
FLlik(p p' g, q4") = (F) (5) (E) B.(z). (7)

30
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!

The algebraic coefficients gi:,fjk look like (W. Gloeckle):

Iy k T ————— 11 4 (11 . L s j
g 1" = —g‘i‘s‘ji‘ﬂzfsfjftwﬁ{g 2 r}Z(LS){? > ;} AL
2 T ¢ )13 3 5 s I § 7J
! ! =7 p |
% ir ‘?L '}r E(l)EE_HI | (20 +1)! J (21" 4+ 1)! Z{ li o g}
§ — i
L 5] \2 V@)@ @@L 4| A L f
« 120 UL ooy noi oyt £ Lo o) 0y (ko0 £0)
N L f! 2 1 ;b k 1 2
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Overlap matrix elements in the free wave-packet basis
for S-waves

In our approach we use a lattice basis, i.e. the wave-packet basis built
from the momentum free-motion packets. Two-dimensional (three-
body) free wave-packet in momentum representation is a step-like
function:

1 d(p € Ap)id (g € Aq)
qlziy;) = (p.glD) = : (8)
(b alziy;) = PaAlB) = e ;
where variables p and g are defined on the intervals Ap = (p;—1, p;)
and Ag = (gj—1,q;) (we use the same notation for the interval

widths, i.e. Ap = p; —p;—1 and Agq = q; — gj—1) and the func-
tion 9(p € Ap) =1, if p€ Ap, and 0 otherwise. Such wave packets
are normalized to unity with the weight p?dpq?dq and form an or-
thonormal basis (if the intervals are not overlapped to each other).

32



"
To find the matrix elements of the permutation operator P over the

free wave-packets (8), one has to integrate the function (4) (we

denote here (p'q'a’|P|pga) = P‘f’f;“’(p’, q’,p,q)) over rectangular cells
Ap, Ap'. Dg, Aq”

1 a'ayr 11 Py b 131
; ; If&&;&&;l:‘ (p'.q',p.q) pdpadap'dp q'dg'.
y ApAp AgqlQg TEPEP RIS

(9)

Assuming t;hat the size of the cells is sufficiently small, the smooth
function Fl1l1*(p. p' q.¢") (7) can be taken out of the integral in (9):

f J! . ! ! f .
Py, d\pa) =~ S FLlik(p* p* ¢, ¢")g1 kPO ¢/ p,q), (10)
11k

where the gquantities labeled with asterisks are the values of momenta
at the midpoint of the overlap of the pair of cells (Ap, Ag) and
(AP, Aq"), and PY is “nonsmooth” part of the overlap function

(4):
4

PO, ¢ p,q) = qq,pp,a(p"z +3/4¢"° — (p2 4+ 3/4¢2)) ¥(1 — |z|). (11)

(A, d|PlA, o) =

33
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Now one should evaluate the integral over the non-smooth part:

trored)
VAPAY AqAG Japapagng
which is equal to the overlap area for two cells, viz. (Ap,Aq) and (Ap’,AQ’).

(D[ PP)A) = 5(p'°+3/4q"—(p°4+3/4¢%)) ¥(1—|z|) dp dg dp’ dd’,

For this purpose it is convenient to use the polar coordinates. Let
=, LS
us introduce the "aligned” momentum variables p and g = 1;"(3,’4}.;

for whizcj:h the law of energy conservation takes the form p2 -+ qz =
p’z + ¢’°. Polar coordinates Q, & are introduced as:

§=Qsina, p=Qcosa, @Q°=p°+q§. (12)

The ratio p/q, the angle z and the functions F can be expressed in
terms of {Q,a} as follows:

."—
V3/4 3 1 1 sin o’

: I:—Q——R—— where R — : (13)
tanao dtan‘a R

1

p/a= sin o

Fhlik(p ' q,¢") = (4/3)1F /2 (tan o) (tan o) RA+H0 T Py(z). (14)
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The area of overlap region for two ‘boxes’ (Ap,Aq) and (Ap’,AQ’) can be
calculated in polar coordinates as:

[ 86 +3/44° — 4 +3/44%))0 dpdq dp dg’
= (4/3) [ (@ - @*)9 QdQdaQ/ dQ'do’
= (1/3) [ 5(Q? - Q)9 d(Q?)dad(Q*)da’
= (1/3) [ 9(1 — [a) d(@*)dada’ = 1/3N(A,' A),
where MN(A, A = [0(1 — |z])dQ?*dada’.

Thus we get:

!

4 Aola
(A o/ [P\ o) =

3/ apAp AgAd

N, n),

where

'ov __ 1311k / Iy 1k
A¥e = ST phlikpr p* g% g*')glilk,
9,0k

See eq. (14) for the meaning of symbols.

(15)

(16)

(17)
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Region of integration in the plane (o, a’)

The condition |z| < 1 can be expressed through the polar angles «, o’
The overlap region S(a, '), determined by the condition |z| < 1 is a
rectangle bounded by four straight lines (see Figure):

k]

60 — a o0
120 — o '
—60 4+ o« _
60 + a i

e T Ty Tmy

R R R R
ANV

i

The region of integration in the plane (a,a’) is the intersection of the large rectangle S
restricted by the above four straight lines corresponding to four inequalities (the
region of admissible values of o and o’) and a small rectangle R(Q) whose vertices
depend on Q-value.

The area of intersection between the large rectangles S and small box R(Q) can be

evaluated analytically by formulas of elementary geometry. 36
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Rectangular cells Ap @ Agq, Ap ® Aq' are transformed to the areas
of S(Q%, a), S(Q? a’) respectively, so that the integral (15) equals
to the volume of a three-dimensional body V bounded by the inter-
section of three mutually perpendicular cylindrical surfaces S(a, a’),
S(Q?, o) and S(Q2,a’):
M :fﬂ(|m|)d(@2}dcrdcr’:/ dQ%dada’. (18)

S(aa!)US(Q2,0)US(Q2,a")

In practice, this integral is calculated as the external integral over QQ
in the range (Qfﬂm Q?,.,ax} from the intersection area of two rectangles

in the plane (a,a’): S(a,a’) and R(amin, @max, /i @max)
N= /QE“E‘“ d(QE)// dada’ (19)
- J@? SNR(Q) |

min
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The integration limits over QE and the vertices of the rectangle R

are computed directly:

Qmin — lower left corner of the cell 4;
Qmax — upper right corner of the cell A’

amin(Q) = max(arcsin %, arccos %);

amax( Q) = min(arcsin %, arccos 2 ):

T;_ o
i1 arccos—2):
) @

l':tfl:i'l'lin (Q] = max(a rcsin

!

o (@) = min(arcsin é, arccos Pj_l].

On the definition of the integration limits in the variables Q.a.a’. The cells A

and A’ in the plane (pg) and their polar coordinates (amin, amax) and (o) @nax)

are shown.

To summarize: we have evaluated the matrix elements (A.a |P|A,) for the
permutation operator P between the wave-packet basis states (see Eq. (16)).
These elements are expressed in a simple almost analytical formula.
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Wave-packet form of Faddeev equations for nd scattering

Now, having the permutation operators and channel resolvents
expressed in a simple way in the wave-packet basis, the system of
integral equations for the partial Faddeev amplitudes can be reduced
to a simple matrix equation:

X = —PV]_ — PV]_G]_X, (QU)

where P, vy and Gy are the matrices of the permutation operator
P, pairwise NN interaction v1 and channel resolvent G{(F) = (FE —
Hgp — 1,11)_1 correspondingly, and X is the matrix analog for partial
amplitude.

VWe use the perturbed wave-packet lattice basis:

1Si5) = |zi, Y5}, (21)
where |z;) are the wave packets constructed from the exact scatter-
ing functions for two-particle subsystem (the perturbed two-particle

packets), and |y;) are the free wave packets corresponding to the
free motion of the third particle.
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Just employment of such a perturbed-packet basis is a distinctive
feature of our approach, because in this basis the channel-resolvent
matrix Gy is diagonal and its elements are defined by explicit expres-
sions including only the values of the cell endpoints and the total
energy of the system.
The perturbed wave packets |z;) can be approximated by pseu-

dostates obtained from a diagonalization of the two-particle Hamil-
tonian in the free wave-packet basis {z;}:

|zi) ~ |Z) = ) Ol (22)
where the matrix O;. resulting from diagonalization defines the tran-
sition from free wave packets to perturbed ones. Then the matrix
elements of the permutation operator P can be simply expressed in
terms of its matrix elements P%?k,j; taken in free wave-packet basis:
Pij,i’j’ = (z{yj|P|zi:ij} ~ Z Oik@:’k’j:fj,k’j" (23)

k'

As a result, we have simple formulas and algorithms to compute all
the elements included to the matrix analog (20) of the FE.
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The three-body amplitudes

On-shell partial amplitudes of the elastic nd scattering are associated
with certain “singular” elements of the matrix X, which is a solution

of the system (20):

f
Doy AL
UJ; ; (E} — 10J10+10J0 (24}
AT AT ] Y
3@0 d_j'.j

where the index ip corresponds to a bound state in pair subsystem

(deuteron with binding energy ¢;), and the index jg denotes the
“singular”™ interval along the second Jacobi momentum variable g,

which the on-shell momentum gqp = U‘%m(E — e4) belongs to.

The breakup amplitude A(p,q) can be defined from the same matrix X, viz.
ed.
ioyy (P) XOJ’ J P |
A(p,q) ~e“™ —, (ged,

Jd.dd. G ed.
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To summarize: we have formulated the new framework for solving few- and
many-body scattering equations (e.g. the Faddeev ones) in the wave-packet form.
This clear matrix form makes it possible to simplify enormously the whole solution

of any few-body scattering equation as compared to its conventional form in the
following points:

* The conventional multi-dimensional integral equation with singular kernel (with
complicated moving singularities) is replaced by simple matrix form with regular
(averaged and smoothed) matrix elements.

* Due to this smoothing, there is no need in deformation of the integration path
when solving the singular equation.

* Due to fixed simple form of the overlap matrix for the permutation operator P,
there is no need in very time-consuming multi-dimensional interpolations of the
current solution when one iterates the equation kernel.

» Because of pixel-like form of the regular matrix which approximate the integral
kernel one can parallelize the whole computation of all matrix elements via
ultrafast graphical processor (which can operate with pixel-like data sets with
ultrafast speed).

Thus, all these steps lead to fully new technology for scattering computations.
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lllustrative examples

The benchmark calculation for n-d elastic scattering:
1) s-wave quartet channel (S=3/2)

180 ——rrry — e ———rrry T T T T T — T
| | |
1500 i
(.98 .
B
w120
= 096
s E
[§
g 90 01,04 -
G- .52 N
Y el L Leenld N o C . 1 . 1 1 . 1 !
}EHJ.EJJ 0.1 102 “')U 5 10 15 203 25 a0

|
E, (MeV) E__(MeV)

The real part of the s-wave partial phase shift (left panel) and the inelasticity
parameter n (right panel) for n — d guartet scattering found by the solution of
matrix Faddeev-type reformulated equations on the three-body wave-packet basis
at different basis dimensions M x N: 100 x 100 (dashed curve), 200 x 200 (solid

curve). T he black triangles reflects the conventional Faddeev calculation results.
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2) n-d elastic scattering: s-wave doublet channel (S=1/2)

I || ! 1 ! T T T T T T T
I
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“trn

The real part of the s-wave partial phase shift (left panel) and the inelasticity
parameter n (right panel) for n — d doublet scattering found by the solution of
matrix Faddeev-type equations on the three-body wave-packet basis at different
basis dimensions M = N: (50 4 50) x 50 (dashed curve), (80 4 80) = 80 (dotted
curve), (100 4 100) x 100 (solid curve). The triangles show the conventional

Faddeev calculation results.
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Differential cross section of nd elastic scattering at
E,.,=13 MeV (Nijm NN potential): comparison with

o(0) (mb/srd)

the Bochum-group results.
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* Cross section is
reconstructed from
the partial-wave
amplitudes

(Phys. Rep. 274 (1996))
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Three-body breakup n+d—n+n+p differential cross sections
at E_,=42 MeV
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GPGPU-calculations for
few-body scattering problems
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Supercomputer Blue Gene in
Juelich where all the calculations
of the Bochum group have been

performed ‘

Large Supercomputer
Kraken (Cray),
University of Tennessee

G—
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Principal difference between CPU and GPU architectures

GPU

—_— —\.ﬂ—ﬂHEI—\.- -\.i—ll—\.s
[ S - R~

The basic problem in our case is how to reduce multi-dimensional integral
equations of few- and many-body scattering to the form most appropriate for
the massive-parallel realization, i.e. via quasi-independent parallel
computations along many thousands threads.
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New technology for solving multi-particle scattering problems

1. From the integral (continuous) kernels, we come to a purely discrete (pixel-
like) form of the matrix kernel. So, we get two- (or more) dimensional

histograms of high size.

1
K(p.0) = Ky = [K (p, a)dpdg

2. Usage of superfast graphical processors for fully parallel computation of the

matrix kernels (pixels).

3. Development of parallel algorithms for all above calculations.

m
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New era in computing: GPU computing

“The convergence of new, fast GPUs optimized for
computation as well as 3D-graphics acceleration and vendor-
neutral, industry-standard software development tools means
the real beginning of the GPU computing era”

- Insight64 (NVIDIA)

192 Quad-Core CPUs

69 ns/day 46 ns/day
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Some examples for employment of GPU-computing with
CUDA-medium in medicine, military applications, modeling
the physical processes, etc.

Air reconnaissance.

Reconstruction of the detailed object structure on the basis of 3D
USD-scanning (wide application in oncology).

Modeling the blood flow in coronary arteries (application in
angiography).

Modeling the tsunami propagation over oceans and flood picture of
the coast.

Hydrodynamics of viscous fluid flows.

Lattice QCD.

Modeling the particle motion in particle accelerators.
Oil- and gas prospecting.

Etc., etc.
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Alr reconnaissance
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Conclusion

Joining together the new methods for pixel-like
discretization of multi-dimensional integral kernels with
new GPGPU-computing in fully parallel mode using
ultrafast graphical processors leads to new era In
computations for multi-particle scattering problems.
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