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Introduction

Introduction: an example of (d,p) reaction.

R. L. Kozub et al., Phys. Rev. C73,044307 (2006)
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Introduction

Introduction: what can we learn from d induced reactions?

Nuclear spectroscopy from deuteron scattering.

© From transfer reaction '%X(d,p)A-*'ZlX:
©® The spectrum of the nucleus A*%lx.
® The spin and parity of the levels of this nucleus.
@ From elastic and inelastic scattering ’% X(d,d')'%X*:
©® The excitations energies of the nucleus '%X.
©® The deformation parameters of this nucleus.

The deuteron features in the cross section calculations.

Our goal is to include the deuteron properties in the cross section
calculations. We wish to take into account that the deuteron

@ is a composite system;

@ and it is a weakly bound nucleus (low binding energy (2.2 MeV) and no
excited states).
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The CDCC formalism. t
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The CDCC recipes.

Introduction.

The CDCC approach is a quantum mechanical description of the scattering
of a composite projectile by a nucleus which includes the structure of this
projectile. But since this problem is very complex, some approximations and
simplifications will be done.

First simplifications.
To describe the 3-body system, one should use
these three partitions but within the CDCC
approach, only the first partition is taken into
account.

A quantum mechanical approach: (ﬁeﬁ — E)\IJI{[ =0.

“Quantum mechanics” means that:

© the dynamics of the “deuteron+target” (d+A) system will be obtained
by solving the Schrédinger equation for a given Hamiltonian, H. .

O the d+A system will be described by a wave function, ¥{,.
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The CDCC formalism.
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The CDCC recipes.

The formalism: the Hamiltonian.

Some notations: the c.m. coordinates and the relative ones.

{ R=1/2(7 +7,)

p=(Fn —Tp)
Fn=R+1/275
F=R—1/2p

)

- R -
"p Ty = \/a$R2 + b2p? + 2a;b; Rp cos(R, p)
with a; = 1 and b; = +1/2.

He = 5 |Tx+Up(F) + Un(7n) + T+ Vou(p) +VCD(R) | 5.
————
Hpn
Modern Methods in Collision Theory - 2011
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The CDCC formalism.
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The CDCC recipes.

The formalism: the Hamiltonian.

An effective Hamiltonian: choice of the interactions.

CDCC is an effective formalism in which it is assumed that

@ The target remains inert.
@ The energy of each nucleon of the projectile is E/2.

© The interaction between the nucleon and the target is given by a local
optical potential

Uz(ﬂ) = Ueff(ﬁa E/2)

© The interaction between the proton and the neutron is ajusted to
reproduce the binding energy, the phase shifts...
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The CDCC recipes.

The formalism: the Hamiltonian in the spherical case.

Multipole expansion of the potentials: U;(7;) = U;(r;) (i = n or p).

The optical potential depending on 7; will be written as function of R, p and
the angle between R and p:

Ui(r;)) = U; <\/a?R2 + b2p? + 2aibiRpcos(ﬁ,ﬁ)> = Ui(R, p,7)
= Z Via(R, p)PA(7)
A=0

where v = cos(R, 7). Due to the orthogonality properties of the Legendre
polynomials, these V; z(R, p) are given by:

220 +1
2

+1
/ U, (\/a%R2 + b2p2 + QCLibz’RP’Y> Py(v)dry .
-1

Via(R, p) =
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The CDCC formalism.
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The CDCC recipes.

The real part of V; 1 (R, p)

2
1
0
1
2
2

The imaginary part of V; 1 (R, p) The imaginary part of V; 5(R, p)

The imaginary part of V; (R, p)
Modern Methods in Collision Theory - 2011
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The CDCC formalism. t
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The CDCC recipes.

The formalism: the Hamiltonian in the spherical case.
Multipole expansion of the potentials: U;(7;) = U;(r;) (i = n or p)

The multipole expansion of the optical potential is given by:

Ui(r) = Y Via(R,p)PA(7).
A=0

Using the addition theorem (Messiah p. 422)

A
22 + 1 e
Bt = D T@K).
w=—A
the optical potential reads:
7,)\ R P * 1 7 ~
() = 47rz Z T S EYI(R)YL(D) -

A=0 p=—\
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The CDCC formalism. t
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The CDCC recipes.

The formalism: the Hamiltonian in the spherical case.

Multipole expansion of the potentials: U;(7;) = U;(r;) (i = n or p)
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The CDCC formalism. t
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The CDCC recipes.

The formalism: the wave function.

The wave function for the d+target system.

The wave function \I/]‘{/[(]:E,ﬁ) of the 3-body system reads as a superposition

of states:
J+1

L qJ
i = 8 oovesin)
M Z (I)O(p)®X0(L7Ja PO)R) M+
L=|J-1|
oo I+S J+I

DD /OO[CD(QS“ZI;k,ﬁ)@x(25+ll1,L,J;Pk,ﬁ)]Ldk.

1=0 I=|I—S| L=|J—1|°

BUisrrg
@ The ®; are known wave functions of the p-n hamiltonian:
ﬁpn@o = g9®p and pran = £, ® with eg < 0 and ¢, > 0.
© The first term describes the motion of the deuteron.

© The BU;srry term describes the motion of a broken pair with relative
momentum k.
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The CDCC formalism. t
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The CDCC recipes.
The formalism: the wave function.

Total energy conservation : relation between E, Py, Pk, €9, €.

E = h2P2/2ur + o where ¢ is the deuteron ground state energy.
E = h’P?/2ur + e, with e, = h*k?/2p, and Hpp,® = £, ®. ]

How to handle states into the continuum?

Since the wave function U{,(R, p) of the 3-body system reads as:
J+1 7
W, = Y [e@exdl T P B +
L=|J—1]
oo I+S J+I

Y /Ooo [(I)(QSHZI;k,ﬁ)@x(25+1lI,L,J;Pk,ﬁ) JMdk:

1=0 I=|I—S| L=|J—I]

v~

BUsrrg

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011



The CDCC formalism.
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The CDCC recipes.

The continuum discretization.

We discretize the continuum into bins and we assume that, for each bin
(K, Kiva]:

X(2S+1117L7J; Pk7ﬁ> ~ X(25+1117L7J; é*ﬁ> 7Vk € [ki:ki—&-l]-

Discretization & Truncation: ¢ < N et | < [,....
N

BUsirg ~ Z[@ 5t p) @ % (P, L T 5 R)}

=l

()
M

The CDCC wave function
J+1

U, ~ [ }

M Z 00(p) ® xo(L, J ; Po, R) ut
L=|J—1|

Imax 145 J+I N

X Y Y [EC s Hew L L J; R)} L

1=0 I=|I-S| L=|J—I| i=1

|
A\
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The CDCC recipes.

The formalism: the CDCC wave function.

The wave function: how to derive the ®;(>*1;; 5)?

Each ®,(2t1;; ) of the wave function can be written as:
J P

(i)j(QS—HlI;ﬁ) _ [ﬂb]lp() (P)®77

To derive the ¢;;(p), ie the radial parts of ®;, we first solve the following
equation:
R P | R2U(141)
2p, dp? 2p1pp?

Okl + VonPri = ExPm

with e = h2k?/2u, and with the asymptotic form:

¢ ~ sin(kp —Im/2 = 6(1, k)) .

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011
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The CDCC recipes.

The formalism: the CDCC wave function.

E)erivation of the
®;(>5* ;5 p):

calculation of states
into the continuum.

Four examples of
continuum wave
functions (black lines)
and their asymptotic

forms (red dashed
lines) are plotted for

k=0.35fm ™,
k=064 fm ',
k=0.86 fm !

and k = 0.93 fm ™",

CHAU Huu-Tai Pierre - CEA/DAM-DIF

Example of continuum state with 1=0 and k=0.35 fm™,

Example of continuum state with 1=0 and k=064 fm™*

E
attm)

Example of continuum state with 1=0 and k=0.86 fm*

R I
Aim)

Example of continuum state with 1=0 and k=0.93 fm ™

a(fm)

p(fm)
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The CDCC recipes.

The formalism: the CDCC wave function.

Derivation of the ®;(?5*1l;; 5): discretization by integrating over k (the
average method).

Once we get the continuum states, the discretization can be performed by
integrating over k within each bin [k;, k1]

If it is assumed that the phase shifts (I, k) remain constant and equal to §
then an approximation of the discretized states is given by:

ko 1 kg
sin(kp + 6)dk = ——[cos(kp + )],
k; P t
_ 2 sin(Akp) sin(kqp + 9)
p

where Ak = (ky — k;)/2 and k, = (k¢ + k;)/2. Thus the discretized states
should behave as 1/psin(Akp) sin(kqp + 6).

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011
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The CDCC recipes.

The formalism: the CDCC wave function.

Example of the . .
®;(*5t; 5 p). e e
Four examples of o Dk=0.14 fm* o Dk=0.14 fm*
discretized wave functions ./ 8
(red lines) and their
asymptotic forms (black )
lines) are plotted BY) PEDUERRN O - B o
assuming that B B
Fmax =14 fm~ and I g || L )

2| £k=0.14 fm ™ o= £k=0.14 fm ™

using 10 bins to discretize -

o

the continuum. The
asymptotic form is defined ..
by
1/psin(Akp) sin(kqp+0). =

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011
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The CDCC recipes.

The formalism: the CDCC wave function.

Other mehods to discretize the continuum.

Some other methods have been proposed to discretize the continuum:

@ The mid-point method in which the continuum states are the scattering
states for given values of scattering energies.

@ Some authors [9, 11, 12] have also developed approaches based upon
pseudo-states (PS): the projectile wave function are eigenstate of the
Hamiltonian in a truncated basis of square-integrable functions.

Some studies have been performed to compare these different methods of
discretizations [10, 13] and the pseudo-state method has been improved by
introducing some transformed harmonic oscillator basis in order to overcome
some issue streming from the gaussian asymptotic decay of the HO basis.

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011
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The CDCC recipes.

The formalism: the CDCC equations.
Derivation of the CDCC equations.

To obtain the CDCC equations, just follow the recipes:

@ Introduce the CDCC wave function into the Schrédinger equation.

(J)
o Left-multiply the Sch. equation by [ (35U LT p) @ YL(R) y

o Integrate over 7 and the angular variables R

@ Solve the following set of coupled differential equations for the radial
parts u (R) of the wave functions :

R? d®>  RL(L+1)

= V€ _ B ) ul(R F2(R)ul (R

(- + et ey, ol () = = SRR )
with u/(R) — 8,0 UT)(PR) — £/ P,/By S UM (PR),

where S’é(‘)]c) are the CDCC S-matrix elements, ¢y denotes the elastic channel

and UM and U(5) are the outgoing and incoming Coulomb wave functions.

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011
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The CDCC recipes.

The formalism: the CDCC equations.

Definition of the form factors.

The form factors are thus defined by

FL(R) = {[8:© Yo ()] 1Upa + Unal [0 @ Y ()]

The brackets <>R,3p denote the integration over R and 7.

Derivation of the form factors by using the multipole expansion.

The easiest way to compute these form factors is to use the previous multipole
expansion of the potentiaIS'

i Rp » Ne
=4 Z LB 1P BB e 1),

where ¢ denotes proton or neutron.

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011
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- The CDCC recipes.

The formalism: the CDCC equations.

Derivation of the form factors.

The integration over the angular variables can be performed by using the
Wigner-Eckart theorem :

47 0

Eeo[ben@)) |[ne e (1)) b o @],

)\ P

B o o0 ()]

This reduced matrix eIement is transformed as follows
O r= . 1)
<[‘I> ® YL (R “ Yy (p) ® Y (R) ]0 |:(I)z" ® YL’(R)} )i
I r

= J2X X X 0
I L J

M[d @]

}(J)

[&)i’ & YL’(R) >R,fo

(YL(R)

VA(R) Yo (R) (@i 1%3(7)] @) -

—A =B
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- The CDCC recipes.

The formalism: the CDCC equations.

Derivation of the form factors: 95 coefficient.
Firstly the 9j coefficient can be simplified:
L J I r
A0 I
L J A

J
J
0
L' ) ~
7 0 J A
NI (7 (_1)J+)\+L+I’
JA {I r J}: 7 A
(_1)J+>\+L+I’

J A

L

L
A
I' A 1) A LA { %
/

(—0)I W (LI M)
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- The CDCC recipes.

The formalism: the CDCC equations.

[e]e]e]e]o]e]e)

Derivation of the form factors: A =

(R).

The calculation of A is straightforward: |

A = )| ) - <=

Derivation of the form factors: B = (®; |Y)(p)| ®i).

(—=1)E=2(LoL/|\0) .

B, the angular part of B, can also be transformed:

5 (L HASAS Al toA I
Bo= (sl vri{ g Y

: (1T A

_ I'+14+S+X , ,

S A T S

= (=) ga (Y [V | Yo ) I'T (1) W (1 115 A S)
/

- (—1)I'+3655/\/li_<101’0|)\0>[’f(—l)l”'““'W(l 1T )\ S) .
T
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The CDCC recipes.

The formalism: the CDCC equations.

Expression of the form factors.

Therefore the form factors can be written as:
= ZZ(c,c’;/\, D) f(e,c;\)
A
where FiL Ll
Z(e,ds N J) = it (1)) S+A555/)\7<l0l 0]A0)(ZOL0]A0)
W (LL'II'; X)W (LT T X S)

and

fle, s X)

| doento) (U0, + UR (0. B) 2l

This expansion is very usefull since one has only had to compute a
one-dimensional integral which is independent of .J.
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The CDCC formalism.

Summary: the main CDCC ingredients

Nucleon-nucleus optical potentials

s waves d waves
3 3
i H
t S & \ dwaied thedataongs
auff]
o L
3 Tw— g
& a0 H jaadl=2
kasim’ &l (oSt
HETiLN 014t

= g
| P g
e | o
kLteim o k106 m
ERHw M e04fm*
o Imaginary part of Vj(R, p).-

&3 alim)

ion Theory - 2011
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Applications.
Lol

Effects of the deuteron wave function.

Ground state and binding energy.

We investigate the effect of the shape of the ground state wave functions
and of the binding energy on the cross section calculations. These
calculations are performed assuming that:

@ The target is the *°Ni.

@ The nucleon-target optical potentials are those proposed by A. Koning
and J.-P. Delaroche.

@ The deuteron ground state is calculated with the V,, interaction with
a Gaussian shape for 3 sets of parameters: three different wave
functions have been obtained with

° ¢, = —0.68 MeV,
9 g = —2.22 MeV
o and g, = —4.32 MeV.

@ The incident energy ranges between 5 MeV and 80 MeV.

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011



Applications.
L o

Effects of the deuteron wave function.

Calculations with different g.s. wave functions

The radial part of the g.s. w.f. Form factor obtained by folding. Reaction cross sections.
3 a+PNi g£° g =
3 3 3 Fom
=-2.22MeV 2 B s
ik G e . H 1750 —
‘ g E

0 £,5=-4.32 MeV

d+*Ni
£gs=-2.22 MeV

[ £,,=-4.32 MeV

= = i 3 i 0

) °R (i En (NeV)
Differential cross section. Differential cross section. Differential cross section.
B d+Ni $ N <.
. A £,.=-222 MeV . £,.=-222 MeV )
1 i 25 =
. £,.=-4.32 MeV £,.=-4.32 MeV £,.=4.32 MeV
E~52 MeV = E,=56 MeV/ . E,780 MeV/
as ,
04 o2
£ % o T o g e % o oo T oo EJ E3 6 T2 T 7
Oum (deq.) Bun (deq.) B.n (deg )
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Applications.
VO®

Effects of the deuteron wave function.
From these figures, we can draw the following conclusions:
© The depth and the width of folding potentials are modified.

@ The threshold and the amplitude of the reaction cross sections depend
strongly on this w.f.

© The oscillary patterns of the differential cross sections also depend on
the projectile w.f.
An accurate measurement of the cross sections can thus provide a precise
insight about the projectile features.
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Applications.
®00

Effects of the continuum discretization.

Continuum effect.

We want to check that the CDCC approach converges while increasing the
number of states (i.e. the number of bins) used to discretize the

continuum. We also wish to compare the calculated cross section with the
experimental one. The following calculations are performed assuming that:

@ The target is the *3Ni.

@ The nucleon-target optical potentials are those proposed by A. Koning
and J.-P. Delaroche.

@ The s and d waves of the deuteron g.s. and p-n continuum states are
obtained by using the Reid93 potential.

@ The deuteron is incident at 80 MeV on the target.
@ The number of bins increases from 0 to 12.
® k,.=15fm™ L

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011



Applications.
0®0

Effects of the continuum discretization.

Convergence of the CDCC calculations with the bin number.

Differential cross section. Differential cross section (log scale).

da/dn

: |
[ 20 40 60 80 100 120 [ 20 40 60 &0 100 120
O, (deg.) O, (deg.)
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Applications.
00®

Effects of the continuum discretization.

Continuum effect.

We can conclude that:

© The calculations converge while increasing the bin number.

© For this incident energy, the elastic cross section calculation has
converged by using 4 bins to describe the continuum .

© A better agreement with the experimental data is obtained by including
the continuum states.

As expected for weakly bound projectile, the coupling to continuum states
plays a crucial role onto the elastic cross sections and it clearly improves the
agreement with the experimental data even though there are still some
discrepancies between the calculated cross section and the experimental one
meaning that other channels (inelastic, transfer 7) should be included.
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Applications.
°0

Effects of the value of kmax-

Ko effect.

We have checked that the CDCC approach converges while increasing the
number of states (i.e. the number of bins) used to discretize the
continuum. We also compare the calculated cross section with the
experimental one. These calculations are performed assuming that:

)

)

The target is the ®3Ni.

The nucleon-target optical potentials are those proposed by A. Koning
and J.-P. Delaroche.

The s and d waves of the deuteron g.s. and p-n continuum states are
obtained by using the Reid93 potential.

The deuteron is incident at 80 MeV on the target.
The number of bins is set to 4.
Kmax belongs to [0.1,1.5] fm~1 .

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011




Applications.
oe

Effects of the value of kmax-

Convergence of the CDCC calculations wit

Differential cross section. Differential cross section (log scale).
o 35 -
N N N
© N 9 E,~80 MeV/
E,=80 Mev .
— kg =L4fm? —— Kyp=L5fm?
\D" '
Kopa=15 fm™*
. = \
100 120 o 20 40 60 80 100 120
©.,. (deg.) O, (deg.)
-~
(€S9
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ntroductio he CDCC formalism. Applications. Transfer reactions
°

Concluding remarks.

These calculations show that:

o

Q

The calculated cross sections depend on the shape of the projectile
wave function.

The CDCC cross sections converge while increasing the bin number.

The coupling between the elastic channel and the breakup ones has to
be included to improve the agreement between calculations and
experimental data.

It seems important to include all the open channels to describe the
continuum.
It seems also that it is necessary to go beyond CDCC calculations and
to include other reaction channels :

@ the inelastic channels to take into account the target excitations

(CDCC*) ?
o the channels describing the projectile excitations (XCDCC) ?
o the transfer channels ?

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011




Transfer reactions.
0000

Formalism.

Transfer reactions.
The partitions for the reaction a(=b+1z)+ A — b+ B(=x + A).

a partition B partition
a=a(=b+z)+ A B=b+B(=x+A)
The model wave funtion reads:

U hodel = Ua(Ta)Va(ba) + up(7s)5(Ep)

with &, = zb and spin variables and &5 = zA and spin variables.

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011



Transfer reactions.
0®00

Formalism.

Transfer reactions.

The system is thus described by:
¥ model = Uo (T )V (€a) + “ﬁ(Fﬁ)iﬁﬁ(fﬁ)

where o and 3 denote two partitions of the system : a = A + q,
B = B+0b and the u,(,), uz(73) are unknown functions. For each
partition, one can define a basis:

U, = 5a(F_ Fa)l/}a(ga) and \Ilﬁ = 5,3(F_ Fﬁ)%(fﬁ) g

The Schrédinger Equation reads:

HW EV

model = model -

Thus one can get:
(ol (B = H) ¥ mogey = 0 and (Ws] (B — 1) ¥ nodel) =0

with the two equivalent forms of H: H = H, + Ko + V, = Hg+ Kg+Vs.
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~ Formalism.

Transfer reactions.

Derivation of the equations.

Thus we get:
(Wal (B~ H) ¥ pnogep) = 0
Vsl (B~ H) | ¥roger) =0
(Vo (B~ H) |ug(Fa)p) = 0
(

U, E— H [t (Fo)Va
| Ug| (E = H) |ug(Fs)ibs) =0

)+
B — H ) Jua(Fa)ia) +

ol (B = Ho = Ko = Va) ta(Fa)ta) + (ol (B = H) [us(73)0s) =
%I(E—H)IU( a)¥a) + (Vp| (B — Hp — K — Vi) up(7)

(B = £a) = Ko — (talValta) ua(fa) = (Wl (B — 1) lus(Fs) )
(B~ en) — K — (b3l Vila)] wa(r) = (sl (B~ B) [ua(Fa)a)

———— —/
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Formalism.

Transfer reactions.

Example of coordinate transformation

a center of mass of {(x, m;); (b,my)} :
= — g

8

Y
mp + My

B center of mass of {(z,m,);(A,ma)} :

B = ma TA.
ma + myg N
y . om(aBBb)
b+ aA = +aA
mp + My my + My
U ma TA+Bb) +aA.
mp + My \Mma + My
o ot (Y
Mg (my + mg +ma) \my + my
CHAU Huu-Tai Pierre - CEA/DAM-DIF
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Transfer reactions.
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Examples.

Evolution of the transfer cross sections with the E; and Z.
AX(d,p)A*LY differential cross sections < E4 <30 (MeV).

%Zsi(d,p)fzsi cross sections. éégsn(d,p)ééQSn cross sections. 882Th(d,p)8831—h cross sections.

8si,, 118Snge 3 Thy g,
Neutron w. f.: 2s1/2. Neutron w. f.: 3s1/2. Neutron w. f.: 4s1/2.
g ?° 195, §m S
1,20j,=1/2 1,20j,=1/2 1,=0j,=1/2
o o
Fm ) i Rum)
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Transfer reactions.
0000

Examples.

Evolution of the transfer cross sections with the E; and Z.
AX(d,p)A+1Y differential cross sections for 3 < E; < 30 (MeV).

%8Ne(d,p)%éNe cross sections. gng(d,p)g})Zr cross sections. ggs Ra(d,p)gggRa cross sections.

oNew 107150 *&Rays
Neutron w. f.: 1d3/2. Neutron w. f.: 2d5/2. Neutron w. f.: 3d5/2.
% 21Ne %0 QJZr %; ZZQRa
1,.=2j,=3/2 1,=2j,=5/2

R (im) R (1m)
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Transfer reactions.
00800

Examples.

Evolution of the transfer cross sections with the E; and Z.

AX(d,p)A+1Y differential cross sections for 3 < E; < 30 (MeV).

388 F’b(d,p)gg9 Pb cross sections.

ggNi(d,p)ggNi cross sections. égOCe(d,p)},glCe cross sections.

r7
S]]

3iNig,

Neutron w. f.: 2p3/2.

*Pbyag
Neutron w. f.: 2g9/2.

HCes,

Neutron w. f.: 2f7/2.

R

pp

ues(R)

110y
1,=3j,=7/2

Ul

SNi
1=1j,=3/2

R (1m)

<)
Modern Methods in Collision Theory - 2011
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00080

Examples.

Effect of the orbital angular momentum of the neutron w.f..

Differential cross section. Differential cross section. Differential cross section.
Zei(dp)ier L Zer(dp)¥er L Zer(dp)¥er
1,21),=3/2 1,3],=512 \ 1,24],=912
E~10MeV @ EF10MeV af EF10MeV
L P e w
g € "[Notmaching " ot matching
g erdp)™er v_ r(dp)er v_ r(dp)er
1,21),=3/2 1,23j,25/2 1,=41,2912
E~10MeV @ EF10MeV @ EF10MeV
L P e w
Neutron wave function : Neutron wave function : Neutron wave function :
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Examples.

Effect of the spin of the neutron w.f. on the cross section.

)

Neutron wave function:
l=1and j =3/2.

=cr
|,=1],=32

R

Neutron wave function:
l=1and j =1/2.

=cr
T

CHAU Huu-Tai

Transfer reactions.
0000e

Differential cross section:
l=1and j =3/2.

SCr(d,p)*cr

O (to3)

Differential cross section:
l=1and j =1/2.

SCr(d,p)*cr
171,712
151,232
E,~10 MeV

Modern Method

ierre - CEA/DAM-DIF

Vector analyzing power:
l=1andj=3/2.

S2Cr(d,p)*cr
171,782
E~10MeV

Matching

O (tog)

Vector analyzing power:
l=1andj=1/2.

SZCr(d,p)¥Cr
171,712

Not matching

E=10MeV)

O (tog)




Conclusion
.

Formalism.

Core excitations: XCDCC.

Introduction.

An extension to the CDCC approach has been proposed by N.C Summers, F.
Nunes and |. Thompson to include the core excitations [1-2].

Ip [ [~ R H=Tr+ H, 0o +vet +Vort -
Pl\wc/ “69 R proj T Vet t

H,roi =T + Viye(r, h .
Figure 1: Coordinates for the pros Pt Vee(r, €) + heore(£)

three-body problem.
The wave function of the system reads:

GRS AL IR EL AR LT

T

[1] N.C. Summers et al,, Phys. Rev. C73, 0631603(R) (2006).
[2] N.C. Summers et al., Phys. Rev. C74, 014606 (2006).
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Formalism.

Core excitations: XCDCC.

The XCDCC projectile wave function.

The projectile ground state includes contributions of several core states which
are coupled:

Z<I> ) ® xs] ® ¢1()] 5,

By denoting

(Bor,€los Ir) = | |Yo(R) @ 9%, (r6)| @ (6] |

T

the form factors to be computed are given by

i

ao!

(R) = <Oé; JT“/ct(R’ T, 5) + Vvt(R’ T, £)|O/; JT> .

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011



Conclusion
o

Formalism.

Core excitations: XCDCC.

The XCDCC form factors.

The form factors have been derived by N.C Summers et al. by using a
multipole expansion:

UIL(R) = LEpdp(—1)/rt S (-1pR2 (A L
’ P - 0 0 0

Jp T A a
< I IIJD J >Finn:J},i’n’(R)

where

A _ KQA pEQXA
F pin:Jpi'n/ (R) - Z Ram :a’i n’ ) a:a’ :
KQMNa:a!
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Formalism.

Core excitations: XCDCC.

The radial part and the angular part.

The radial part and angular one are respectively given by

Rm
RECY  (R) = K ul, “(r) VEE (r, R) RN (—yr) @l (r) dr
ct a’:n

ain:a’i’'n’

PI,(Q)\:A _ (_1)j/+l+ll+S+QQK/§j/Zi/\/ (2Q)' ] <I || CQ(&) H Il>

a:a EV2Q — V]!
w{ K Q—X\ N N
(00 0)Z4 (% %" 5)(% o 0)
Y s
N Q- K I 1 s P r @
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Conclusion

Applications

'Be(!'Be,'"Be+n) 60 MeV/nucl.

The model space used by N.C. Summers et al.

The ''Be('°Be+n) ground state is a Jp = 0T with two components: a
neutron s wave coupled to a 0" core (1°Be) state and a neutron d wave
coupled to a 21 core state.

They have compared the calculations including the core excitations with those
obtained without these excitation (Single-Particle Incoherent Sum). The
comparaison is summarized in the table below:

Model  op+ (mb) o9+ (mb) o (mb)
SPIS 109 1 110
XCDCC 109 8 115

They conclude that the o4+ is strongly underestimated by the SPIS model.

'

(€S9

CHAU Huu-Tai Pierre - CEA/DAM-DIF Modern Methods in Collision Theory - 2011



Core excitations.
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Formalism.

Target excitations: CDCC*.

The 3-body wave function.
Uy (By2) = Y. |(i18) I, LJIL; Jp M)
ilSI,LJI

where R denotes the deuteron center of mass coordinates and 0 the
proton-neutron relative coordinates. The channels of the system for a given
Jp are characterized by the following quantum numbers:

@ The bin number i to discretize the continuum;

@ The deuteron spin S = 1;

@ The relative orbital angular momentum [ associated to p;
@ The angular momentum J;

@ The orbital angular momentum L associated to ﬁ

@ The spin of the target I;.

with§+f=ﬁ,,ﬁ+ﬁ,=jandﬁ+j:J}.
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Core excitations.
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Formalism.

Target excitations: CDCC*.

The new Schrddinger equation.

The previous wave function satisfies the following Schrodinger equation:

g|WJTMT(E?ﬁ>> = E|\IJJTMT (ﬁvﬁ>>

where

~

H = Tr + Voa(Fpy &) + Vood (7, &) + Voo + Hpn + Ha
with X X
Hpn 0i(p) = €i pa(p), Havr, (&) = €r, ¥, (&)
and
VI(7, &) = V(ri, 03, 64, &) = 3, v (ri) Pa(cos(6)))
Due to the deformation, for each nucleon, the optical potential depends on 7;
(i = n or p).

- o
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Core excitations.
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Formalism.

Target excitations: CDCC*.

The starting point: T. Tamura's work [3].

The optical potential between the target and a nucleon was derived by
T. Tamura and is given by

A A
coupl Z )‘ )\+1v§\rot) (Ti)DMOYu)\ (TZ) :
AF£0, 1

The solid spherical harmonics addition theorem for 7 = z; R + Yip

VAT (22X + 1)zl RPyP p* P - —_—
RN = 3 2l [yP(R) eV (p)]
0<peA (2p + D12\ —p) + 1)! 1

[3] T. Tamura, Rev. Mod. Phys. 37 (1965) 679.
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Core excitations.
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Formalism.

Target excitations: CDCC*.
The new form factors V. = (c|V (7)|c).

For a rotating nucleus, one gets:

)\pa.L//l//
A Yy L I, J
ILLJL, 1L g0 6L 1" (X —p)p (1) M ¢ L7 1" A
Lo

5 o p L” o ()\ p) 1" L L r o
s\o0 0 0 0 0 0 0 0 0 0
DN A 7 I T I oA
o p ()\—p) l s J J JT 0 0 O

"4
—1/1/</))1//</)) J7(R, p)dp.
P
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Core excitations.
°

Application.

Target excitations: CDCC*.

Elastic and inelastic cross sections for a magnesium target.
24 0
=

W
L 1 Energie de liaison
L f HFB=193.190 MeV
15 = Exp=198.26 MeV |
~ F 4
s F ]
3 -
S 10f . 7
5 ’ - - I8
\ : I=16 0
C ] B 71 :
| S P B “*Mg spectrum

-0.5 0.0 0.5 1.0

g

HFB-DIS Bruyéres-le-Chatel

3 0.4
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Core excitations.
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Application.

Target excitations: CDCC*.

Convergence test: elastic and inel. cross sections for d+2*Mg an 70.0 MeV

*Ng(ddMg *Mig(dd) Mo(2)

O/Orun(8)
() (mb/sr)

0 bin: deuteron g.s.

700 MeV 700Mev

1 bin to discretize the cont.
3 bins to discretize the cont.

4 bins to discretize the cont.

10 bins to discretize the cont.

2l L L bl I I e B e
] 2N 4w B & 10 D 10 2 30 40 S0 6 70 B

0, (deg) 0, (de)
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Application.

Target excitations: CDCC*.

Core excitations.

(e]

Elastic and inelastic cross sections (2] state) for a 2*Mg target and for

72.0 < Eg < 90.0 MeV.

“ g(d,d)Z‘M g
A\

a(®) (mb/sr)

Ya'
v\

A ‘\',

Hglad) Mg(2)
90.0 \ .

Yoo\
w0\

6.0(deq)

NI
: 1} B0 100

T R
w B W W

0.0 (deg)

24Mg(d,d’)24Mg*
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Target excitations.

Conclusion.

Within this lecture, we have tried to present
@ The main ideas of the CDCC approach:

©® How to choose the interactions?
©® How to discretize the continuum?
©® How to compute the equations?

@ Some applications (the effect of the continuum on the elastic cross
section...).
We would like to emphasize that CDCC is an effective approach and that
the convergence must be tested by increazing the bin numbers, the angular
momentum truncation....
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Target excitations.

Conclusion.

Extensions.

The CDCC method has been applied to analyse reaction involving other
weakly bound projectiles such as SLi, °He, "Li...

The CDCC formalism has been extended to describe other reaction
mechanisms:

@ Core excitations have also been included.
N.C. Summers et al., Phys. Rev. C73, 0631603(R) (2006).
N.C. Summers et al., Phys. Rev. C74, 014606 (2006).
N.C. Summers et al,, Phys. Rev. C76, 014611 (2007).

© The formalism has also been extended to include the target excitations and
to calculate the inelastic cross sections (for rotationnal and vibrationnal
nuclei).

© 4-body approaches have been developped.
T. Matsumoto et al., Phys. Rev. C70, 061601 (2004).
M. Rodriguez-Gallardo et al, Phys. Rev. C80, 051601 (2009).
P.N. de Faria et al, Phys. Rev. C81, 044605 (2010).

Some other formalisms have been developped to include the breakup
channels (e.g. O. A. Rubtsova et al., Phys. Rev. C78, 034603 (2008)).
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