
DIRAC Release procedure using Branches and Tags
Author: R. Graciani

Version: 3.0, 2011-03-04

Based on: http://nvie.com/posts/a-successful-git-branching-model/

Precedents
DIRAC project is using SVN as code repository. We need to produce releases for an increasing
number of  user communities. Among other things, this means that several “active” releases have to
be maintained (bug fixes applied) to accommodate the different life cycles of the releases in the
different communities.

Releases are named with the following convention DIRAC_vXrY. X is incremented when there are
changes on the compiled code, mayor changes on the interfaces or important changes in the
functionality. Y is incremented when new features are added or there are minor changes in the
interfaces (i.e., they are backwards compatible). An extra pZ is added to the release name when bug
fixes (patches) are introduced. In almost all cases bug fixes are relevant for all “active” releases.

The current release procedure occurs in several steps. First, each system creates their own “tags”.
Then, the release manager collects the relevant tag from each system and creates a global DIRAC
tag (DIRAC_vXpY-pre1). From this tag a release candidate is produced, deployed, tested. Updates
and patches are committed to the trunk and new system “tags” are created as necessary. The
procedure is iterated increasing the cardinal of the “pre” suffix until a convergence is found. At this
point, the last list of tags is collected and the final release  DIRAC_vXrY is created.

After this point, only bug fixes are allowed. The procedure to do it is highly non-standard. Fixes
are committed to the HEAD. For the affected system, a new system “tag” is created copying the
“tag” used in the last release for that version. The affected file is updated (removed and copied from
the HEAD, edited on the tag,...). And a DIRAC_vXrYpZ release is defined from the new set of
systems “tags”.

This bug fix procedure has several problems:

– It requires changing tagged files.

– Applying the same fix to other active releases is not foreseen.

– When the trunk has evolved from the release being patched, fixes may be difficult to apply.

There are other alternatives, like checking out the affected tag, making the fix and committing to a
new tag, even more non-standard.

To overcome these problems, we propose to actively introduce the use of Branches in the procedure
as well as a more formal bug found and bug fix report procedure. The use of branches implies more
discipline on the developers but the aim is to simplify the work to maintained “patched” “active”
releases. The proposal is described in the following. 

Different Branches and their usage
HEAD or “trunk” branch: it is the master branch of the code, has unlimited life. We should put all
the effort to keep the trunk in a “working” state. Making use of Development branches when there
are changes that imply a testing phase. This is an important change with respect to the current mode
of work where development was being done directly on the trunk.

Development or Feature branches: they are created when the new code is likely to require a



testing phase, specially when changing functionality or interfaces for existing modules. They must
be created in a “devel” subdirectory and named after the developer working on it or the task is is
trying to achieve; i.e. branches/devel/ricardo or branches/devel/newstager. When the development
becomes stable it must be “reintegrated” into the trunk. During the development process the
developers working on the branch are responsible from merging updates from the trunk. This should
minimize the risk of having a non working trunk. If the development gets to a dead end, it has to be
deleted. In either case it has a limited life cycle.

Pre-Release branches: they are created from a well define set of tags defined from the trunk.
And they are placed in a “pre” directory and are named vXrY-preZ. In all other aspects, they
are identical to Development branches. Once the testing of the pre-release is done and all fixes are
committed it must be “reintegrated” to the trunk before preparing the next pre-release or
release candidate. All tags defining the branch must have been created from the trunk. 

Release branches: they are created when the last release candidate of a series is successfully tested
and requires no additional changes. The same tags are used to create a new branch name vXrY,
located under a “rel” directory. Bug fixes are possible in these branches until they are declared
obsolete.

The life cycle of the different branches are depicted in the following figure.

Some important considerations about SVN branches and merges
From the point of view of SVN all directories (trunk, tags, branches, or any other) are identical. The
repository only has the concept of directories (or files) that are copied from others and thus they can
be mutually merged provided they do not have conflicting changes. SVN also knows how to
reintegrate a copied directory into its source. One needs to merge all updates from the source, SVN
calculates the differences and applies them to the source and, once the modified source version is
committed, SVN forgets the common history.



This has some important implications. In order to merge directories (or files), one of them must be a
copy of the other. Branches, to be reintegrated to the trunk or from where bug fixes are merged back
to the trunk, can not be created (copied from) from tags, rather they must be created by copying
from the trunk, using the same “revision” of the trunk from which the tag was produced. 

Branches can thus be used in two different ways:

– Development mode: created from the trunk, developed, eventually merging fixes from the
trunk, and finally being reintegrated to the trunk or abandoned. This is the distributed
equivalent to doing a cvs checkout, working on your local copy, updating from time to time
from the repository and finally committing all your local changes to the repository. In the
above, this mode is used for development and release candidate branches.

– Release mode: created from the trunk, patch fixed in place or from an older branch, and the
fixes merged back to the trunk or a newer branch. Merges can only go in this direction, from
an older branch into a newer branch, to avoid incorporating new functionality to older
releases. This is the mode for release branches.

From a practical point it view it means that:

– Branches are created from a copy of a given revision of the trunk.

– Fixes are propagated from older release branches to newer ones until the trunk is reached,
from there each development branch is free to take them on board at any time.

– New features are committed to the trunk either directly (small changes or fixes) or by
reintegrating a development branch (bigger changes).

– During the preparation of a new release commits to the trunk, either directly or from a
development branch, should be limited to avoid interferences.

– Between releases new development can be committed to the trunk once they have been
properly tested on his own branch to avoid breaking the functionality.

For convenience, branches are grouped in 3 directories “devel”, “pre” and “rel” in the SVN
repository.

The release Procedure
Following the same structure of the branches we propose to have 4 types of releases for which
distribution tars are to be created:

– Development releases: they come directly from the head of a given “devel” branch and are
used to test them beyond local tests (installation on servers, pilots, clients,..). They can be
recreated as often as necessary. This includes releases created from the head of the trunk.

– Release candidates: they come from the tag associated to a given “pre” branch.  They are
use to test the candidates and eventually certify final release candidates

– Production releases: they come from the tag associated to the last release candidate of the
series.

– Patch releases: in this case the tag comes from the corresponding “rel” branch.

So, basically there are 2 use cases. Creating a distribution from the head of a directory (devel bruch
or trunk) or from a previously defined tag (also a directory in the repository). The dirac tools will be
updated to work in this way.

The procedure to prepare a new release it then as follows:

– Development is frozen: the release manager announces the start of the procedure and ask



developers to reintegrate branches with developments to be included in the new release.

– Preparation of release candidates: the trunk is tagged, the tag is used to create a “pre”
branch, distribution tars are created. The branch is used to commit fixes or do some
development, if necessary, before it is reintegrated to the trunk to prepare the next release
candidate.

– Creation of the release: when the last release candidate certification procedure is passed
with satisfaction, the same tag is used to create the “rel” branch. Distribution tars are
created.

– Patch releases: the release manager decides when accumulated bug fixes on the “rel”
branch deserve a new distribution, checks that all bug fixes committed to older versions are
properly merged. A new tag is created from the branch and distribution tars are created.

– End of support: at some point the branch is frozen an no new patch releases will be created.
All fixes applied to the branch must be merged to the next “active” release if not already
done. At this point the branch is removed or moved into an “old” directory.

The bug fix Procedure
This is one of the most important change in the procedure, that implies extra discipline from the
developers to assure fixes are properly propagated to all “active” releases that is the main purpose
of this proposal.

The bug fix procedure should be as follows:

– The problem is detected. It must be reported for future reference.

– A developer finds the reason and looks for solution. The bug report should be updated as
necessary.

– The fix must be applied on the oldest rel branch for which is relevant (not necessarily
corresponding to the same release where the problem was detected). 

– From this branch the fix is merged into newer rel branches and the trunk.

This assures that at any point in time we can create new patch releases from any “active” version
that includes fixes for all the “known” bugs.

There are 2 key points in this procedure:

– Proper report of bugs and their fix. It is the responsibility of the developer working on the
issue to make sure a proper bug report is created and filled.

– Correct application to all affected branches. Depending on the experience of the
developer, he will commit the fix to the proper branch and propagate the bug fix, or simply
inform the release manager, by properly updating the bug report.

For development branches, it is the responsibility of the developer of the branch to incorporate bug
fixes from the trunk if appropriated or else they will be taken once the branch is merged back to the
trunk. Even if the release manager has the duty to check that fixes in older branches are merged into
newer branches at the time of preparing a new release candidate or patched release, this can only be
done if bug reports are properly fixed and all bug fix commits are commented as such.

Given the number of current developers and the available manpower we must keep a manageable
number of “active” versions; i.e., a small number of release branches should be kept. The minimum
is one production release, a second one while the deployment of the new version occurs by the
different communities, and the trunk.



SVN branching on eclipse
This is simply an interface to “svn copy”. From a certain point of the working directory: Team →
Branch. Browse to find the destination in the branches tree. The copy is done using the local
revision of eclipse project, but not the local changes. In general, one should update from the
repository and commit changes before creating new branches.

This procedure can be used to create development branches from the trunk.

SVN merge on eclipse
This is an interface to “svn merge”. From the place where we want to merge into (at the same level
as the branch was created): Team → Merge.  In the “URL” tab, browse the branches tree to locate
the appropriated source. The “Preview” button allows to see what are the differences. The changes
are made in the local working copy, and a synchronization perspective is opened. If any conflicts
arise, they must be fixed and marked as solved. In order to be able to commit the merged version of
the files the project must be previously updated from the repository (as for any other commit). 

This procedure is used to propagate bug fixes from “rel” branches in to the trunk and from the trunk
into “devel” branches.

SVN reintegrate on eclipse
This is an interface to “svn merge –reintegrate”. From the place we want to reintegrate to (generally
the trunk in the procedure describe in this document). Previous to the integrate is is convenient to
merge into the branch all fixes committed to the trunk (see previous section). Then one should move
to the trunk and update from repository. In Team → Merge, go to the “Reintegrate” tab and browse
the branches tree to locate the appropriated source. The “Preview” button allows to see what are the
differences. The changes are made in your local working copy, and a synchronization perspective is
opened. If any conflicts arise, they must be fixed and marked as solved. In order to be able to
commit the merged version of the files the project must be previously updated from the repository
(as for any other commit). 

This procedure is used to close a “devel” or a “pre” branch incorporating the changes to the trunk.


