Cosmogenic Neutrinos

Dmitri Semikoz APC, Paris

Overview:

- Acceleration of UHECR in astrophysical sources
- UHECR spectrum and GZK cutoff
- Theoretical models and composition
- Constraints on gamma-ray flux
- Predictions for the neutrino flux

Conclusion: proton, photon and neutrino fluxes are connected in well-defined way.

$$E_{\gamma}^{tot} \sim E_{\nu}^{tot}$$

Acceleration of UHECR

Acceleration of UHECR

- Shock acceleration
- Electric field acceleration
- Converter acceleration

$$/E^{\alpha} \quad \alpha >= 2$$

Lobe

Acceleration in polar cap of Black Hole by the electric field

A.Neronov, D.Semikoz and I.Tkachev astro-ph/0712.1737

UHECR spectrum and GZK cutoff

Marseille, April 5. 2011, Cosmogenis neutrinos Zatsepin-Kuzmin (GZK) effect

Nucleons can produce pions on the cosmic microwave background

Same true for heavy nuclei: Fe

Simulation by D.Allard

HiRes: cutoff in the spectrum

"GZK" Statistics

- Expect 42.8 events
- Observe 15 events
- ~5 o

Bergman (ICRC-2005)

Auger Energy Spectrum 2009

Auger collaboration arXiv: 0906.2189 (ICRC 2009)

Auger Energy Spectrum 2009

Theoretical models and composition

Protons can fit UHECR data

V.Berezinsky, astro-ph/0509069

problem: composition

Mixed composition model

D.Allard, E.Parizot and A.Olinto, astro-ph/0512345

Problems: 1) escape of the nuclei from the source 2) How to accelerate Fe in our Galaxy

Auger composition 2009: nuclei!

HiRes composition

From 1010.2690

Muon number in Auger

Can one explain nuclei + cutoff?

D.Hooper and A.Taylor 0910.1842

Secondary photons and neutrinos from UHECR

Conclusion: proton, photon and neutrino fluxes are connected in well-defined way. If we know one of them we can predict other ones: $E_{\nu}^{tot} \sim E_{\nu}^{tot}$

GZK photons with E>10 EeV

Secondary photons and neutrinos

G.Gelmini et al, astro-ph/0702464

Search for secondary photons

Cascade photons with GeV - TeV energies

Cascade photons for 1/E².

10⁻⁵

 10^{8}

10¹⁰

10¹²

10¹⁴

E [eV]

10¹⁶

10²⁰

10¹⁸

Contribution of UHECR to diffuse gamma-ray flux

O.Kalashev, D.S. and G.Sigl, astro-ph/0704.2463

UHE neutrinos.

Parameters which define diffuse neutrino flux

Proton spectrum from one source:

$$F(E) = \frac{A}{E^{\alpha}} \quad E_{\min} < E < E_{\max}$$

 Distribution of maximum energy of sources:

$$F(E_{\max}) = \frac{B}{E_{\max}^{\beta}} \quad \beta = \alpha_0 - \alpha + 1$$

$$D = (1 + z)^{m+3}$$
 $z_{\min} < z < z_{\max}$

High neutrino fluxes

O.Kalashev et al astro-ph/0205050

High neutrino fluxes: IR

D.Alard et al astro-ph/0605327

Low flux of neutrino

•Z.Fodor et al, hep-ph/ 0309171

Neutrino limits constrain most optimistic models

Fermi diffuse gamma-ray flux

V.Berezinsky et al. 1003.1496

Maximum contribution to Fermi diffuse gamma-ray flux

M.Ahlers et al 1005.2620

Contribution of BL Lacs to diffuse gamma-ray flux

A.Neronov, D.S, astro-ph/1103.3884

Multi-Messenger observation all-sky

Conclusions

- Cutoff in UHECR spectrum exist. UHECR come from astrophysical sources. Open questions:
 - □ Cutoff from acceleration or/and cutoff from propagation.
 - Composition: protons or/and nuclei? Input from LHC needed to reduce uncertainty in hadronic models: energy determination and composition of UHECR
- If nuclei dominate at highest energies, flux of cosmogenic neutrinos is tiny
- Fermi data on diffuse gamma-ray background constrain most optimistic models of cosmogenic neutrinos.