AMS : Alpha Magnetic Spectrometer

\triangleright Introduction

- Principle
\triangleright AMS02
- Construction and performance
\triangleright Physics
- Cosmic rays
- Dark Matter

S.Rosier Lees - LAPP

Physics of Multi Messengers , April 5 2011, Marseille

Cosmic Ray fluxes measurements

$$
\frac{\mathrm{dN}}{\mathrm{dE}_{0}} \propto \mathrm{E}_{0}^{-3}
$$

Complementary devices and measurements for different energy ranges

- Nature of CR
- Origine of CR (sources)
- Propagation in different medium, galactic or extra galactic CR

Detector principles

\triangleright Sign of the particle charge

- A magnet and a tracker
- mv/Z $\propto \rho B$
\triangleright Upstream and downstream particle separation
- Timing measurement
\triangleright Identify the particle
- Mass and Charge
- Electromagnetic type
- e/p separation
\triangleright Redondancy :
- Few independent detectors Z, v

\rightarrow High energy physics detector in space

Where : ISS (International Space Station)

AMS:A TeV precision, multipurpose spectrometer

Data Transfer

Time Of Flight

\triangleright Velocity measurement, $\mathrm{v}=$ distance $/ \Delta \mathrm{t}$

AMS-02

(3 yrs)
with SC Magnet

AMS-02
(10Yrs to 18 yrs)
with Permanent Magnet 9 layers of Silicon

Layers I and 9 are far away from the magnet.

AMS-02 SC (3Yrs)
Silicon Tracker Layers

AMS-02 (10-18Yrs)
Silicon Tracker Layers

Layer 9 comes from moving the ladders at the edge of the acceptance from layer I. The layer 8 is moved on top ofthe TRD to become IN. No new silicon and no new electronics .

The momentum resolution $(\Delta p / p)$ is the sum of two contributions:
I. Measurement inside the magnet with an effective length L

$$
(z / P) \cdot(\Delta p / P)_{\alpha / 1 / B L^{2}}
$$

2. Measurement of the incident $\left(\theta_{1}\right)$ and exit $\left(\theta_{2}\right)$ angles whith depend on the length $L_{\text {, }}$

$$
(z / P) \cdot(\Delta P / P) \propto I / B L L_{\mid}
$$

For both magnets, $L \sim 80 \mathrm{~cm}$, but in the permanent magnet B is 5 times smaller to maintain the same $\Delta p / p$ we increase $L I$ from $\sim 15 \mathrm{~cm}$ (Superconducting Magnet) to $\sim 125 \mathrm{~cm}$ (permanent magnet)

Silicon Tracker

\triangleright Principle

- The Tracker is built with close 2500 double sided silicon microstrip sensors, which allow to measure two coordinates with a single detector, reducing thus the material budget.

Measures:

\triangleright Rigidity P / Z up to few TV
\triangleright Energy loss, $\mathrm{dE} / \mathrm{dx}$ propor to Z^{2}
\triangleright Direction and energy of converted photons

Silicon Tracker

200,000 channels; alignment $3 \mu \mathrm{~m}$

9 planes

AMS in Test Beam, Feb 4-8, 2010

Tests were performed with the superconducting magnet charged to its design current of 400 A and to 80A corresponding to the field of the AMS-01 permanent magnet.

AMS-02 SC

Test Beam 2010 : momentum resolution of the spectrometer

With 9 tracker planes, the resolution of AMS with the permanent magnet is equal (to 10%) to that the superconducting magnet.

\triangleright Velocity and Charge measurements

Ring Imaging Cerenkov

Dual solid radiator configuration

	Acrogel	NaF
Refraction Index	1.05	$\mathbf{1 . 3 3}$
Opening angle (deg)	17.8	$\mathbf{4 1 . 5}$
Velocity threshold	0.952	$\mathbf{0 . 7 5 2}$

- Conical Reflector
- Photomultiplier matrix
-10880 pixels
- FE and light collection

$E_{k} / n=158 \mathrm{GeV} / \mathrm{n}$

p, D, $\mathrm{He}^{4}, \mathrm{Li}^{6}, \ldots$
\triangleright Aerogel radiator (Beam test)
$E_{k} / n=158 \mathrm{GeV} / \mathrm{n}$

Resolution per hit is the same for direct and reflected hits

$$
\left(\frac{\sigma_{\beta}}{\beta}\right)_{z} \approx \frac{1}{Z}\left(\frac{\sigma_{\beta}}{\beta}\right)_{z=1}
$$

Proton rejection $>10^{2} \quad 1-300 \mathrm{GeV}$ acceptance: $0.45 \mathrm{~m}^{2} \mathrm{sr}$

Choosen configuration for $\mathbf{6 0} \mathrm{cm}$ height:
20 Layers each existing of:

- $\quad \mathbf{2 2} \mathbf{~ m m}$ fibre fleece
- $\quad \varnothing 6 \mathbf{m m}$ straw tubes filled with $\mathrm{Xe} / \mathrm{CO}_{2} \mathbf{8 0 \%} / \mathbf{2 0 \%}$

12 layers in the bending plane 2×4 layers in the non-bending plane

TRD - The AMS detector @ CERN
November 23, 2007

TDR - test beam results

20 layer TRD detector in the test beam at CERN in 2000

$$
3 \text { million events of p,e,u,л@5-250 GeV }
$$

TDR - Test Beam Results

TDR - test beam results (2010)

Electromagnetic Calorimeter

3D imaging calorimeter

ECAL: last subdetector crossed by particles from outer space
\triangle Particle ID (e.m showers vs. hadron cascades) \triangle Energy measurement (e+, e^{-}, γ) (up to 1 TeV) Δ Trigger system: on non interacting photons

Electromagnetic Calorimeter

3D shower reconstruction

- Sampling calorimeter
- $\mathrm{Pb} /$ scintillating fibers structure
volume ratio Pb :fibers:glue : 60:34:6 dimensions : $658 \times 658 \times 166.5 \mathrm{~mm}^{3}$ weight : 498 kg
- Pile up of 9 "Superlayers"

10000 fibers, $\phi=1 \mathrm{~mm}$, distributed uniformly Inside 1,200 lb of lead

Figure 42: Improved impact correction

Energy resolution

Total Radiation Length >~17 X_{0}

Maximum visible energy given by the limit of non linearity of the FE readout (ie non linearity greater $>3 \%$)

Longitudinal profile at 1 TeV

Minimum energy visible constrained by the pedestal width
0.4 ADC counts $=0.4 \mathrm{MeV}$, for a MiP at I5 ADC counts

Fit parameters from Testbeam data 2007

Proton Beam (2010) 400 GeV

Ecal variables for e/P rejection -TB 2010

Boosted decision tree technique applied on the dataset with TMVA on ECAL variables

AMS in Kennedy Space Center (SSPF)

Positron/electron event

AMS Event Display

Run 1291203759/137659 Wed Dec 113:12:30 2010

Particle TrTofTrdTrdHRichEcal No $0 \mathrm{Id}=8 \mathrm{p}=3.08 \pm 0.13 \mathrm{M}=-0.252 \pm 0.05 \theta=3.05 \phi=3.72 \mathrm{Q}=1 \beta=1.003 \pm 0.001 / 0.97$ Coo=($8.20,40.17,159.05)$ AntiC=-255.98

Electron \& Positron like at KSC

Photon Candidate (1)

Photon spectrum KSC

AMS 02 to the canister

$$
\Delta t=100 \mathrm{ps}, \Delta x=10 \mu \mathrm{~m}, \Delta \mathrm{v} / \mathrm{v}=0.001, \Delta \mathrm{E} / \mathrm{E}=\mathrm{I}-2 \%
$$

Precision study on the property of cosmic rays

- Composition at different energies ($1 \mathrm{GeV}, 100 \mathrm{GeV}, 1 \mathrm{TeV}$)

Antimatter (Anti He)

AMS-OI

Caveat: Pamela not yet included in the comparison (cf last Publication, Pr, HE)

Relative Proton Fluxes (normalized to AMS-02 projected value)

- Propagation parameters (diffusion coefficient)

Indirect search for dark matter

positron signal : production and propagation

AMS - 3 years

Positron

Background

- protons: $\Phi_{p} \sim 10^{3-4} * \Phi_{\mathrm{e}+}$
- electrons: $\Phi_{e^{-}} \sim 10 * \Phi_{\mathrm{e}^{+}}$

TRD :
Deposited energy

Tracker /
calorimeter:
E/p ratio

Calorimeter :
Electromagnetic shower properties
$A_{e^{+}} / A_{p} \sim 10^{5}$

_Confusion de charge (electrons))

- Confusion de masse (protons)

April 2011

- Detector complete and tested (ESA,CERN,KSC)
- Waiting for launch (19->29 April) and data
(Launch+4)

Constraints from space

\triangleright Weight : 7 tons (exp. LHC ~ 1000 tonnes)
\triangleright Low consumption : $2 \mathrm{~kW} \quad$ (conso fer électrique)
\triangleright Temperature: $\pm 50^{\circ} \mathrm{C}$
\triangleright No human assistance redundancy
\triangleright Vacuum
\triangleright Launch
\triangleright Tests (radiation, thermal, EMI and vibration)
\rightarrow AMS01, 1998 + Qualification Model and flight Model for each sub detectors

Ecal variables for e/P rejection -TB 2010

Variables based on the lateral and longitudinale properties of the EM showers
e 180 GeV

$$
\begin{aligned}
& \text { P } 400 \\
& \text { GeV }
\end{aligned}
$$

Input variable: MS1S3

$$
\begin{array}{|l|l}
\hline \text { Input variable: MS3S5 } \\
\hline
\end{array}
$$

Linear dependence (HG)

Layer 5 cell 35

Layer 8 cell 37

