AMS : Alpha Magnetic Spectrometer

▷ Introduction

► Principle

\triangleright AMS02

- ► Construction and performance
- ▷ Physics
 - ► Cosmic rays
 - ► Dark Matter

S.Rosier Lees – LAPP Physics of Multi Messengers , April 5 2011, Marseille

Cosmic Ray fluxes measurements

$$\frac{dN}{dE_0} \propto E_0^{-3}$$

Complementary devices and measurements for different energy ranges

- ► Nature of CR
- ► Origine of CR (sources)
- Propagation in different medium, galactic or extra galactic CR

Detector principles

- ▷ Sign of the particle charge
 - A magnet and a tracker
 - $mv/Z \propto \rho B$
- Upstream and downstream particle separation
 - ► Timing measurement
- ▷ Identify the particle
 - Mass and Charge
 - Electromagnetic type
 - ► e/p separation
- \triangleright Redondancy :
 - ► Few independent detectors Z, v

➔ High energy physics detector in space

Where : ISS (International Space Station)

AMS: A TeV precision, multipurpose spectrometer

Data Transfer

Time Of Flight

Layer 9 comes from moving the ladders at the edge of the acceptance from layer 1. The layer 8 is moved on top of the TRD to become 1N. No new silicon and no new electronics . The momentum resolution ($\Delta p/p$) is the sum of two contributions:

I. Measurement inside the magnet with an effective length L

(z/p) ·(Δp/p) α I/BL²

2. Measurement of the incident (θ_1) and exit (θ_2) angles which depend on the length L₁

(z/p) ·(Δp/p) α I/BLL

For both magnets, L ~ 80 cm, but in the permanent magnet B is 5 times smaller to maintain the same $\Delta p/p$ we increase L1 from ~15 cm (Superconducting Magnet) to ~125 cm (permanent magnet)

Silicon Tracker

▷ Principle

The Tracker is built with close 2500 double sided silicon microstrip sensors, which allow to measure two coordinates with a single detector, reducing thus the material budget.

Measures:

- \triangleright Rigidity P/Z up to few TV
- \triangleright Energy loss, dE/dx propor to Z²
- Direction and energy of converted photons

9 planes

AMS in Test Beam, Feb 4-8, 2010

Tests were performed with the superconducting magnet charged to its design current of 400A and to 80A corresponding to the field of the AMS-01 permanent magnet.

AMS-02 SC

With 9 tracker planes, the resolution of AMS with the permanent magnet is equal (to 10%) to that the superconducting magnet.

14

Ring Imaging Cherenkov

Velocity and Charge measurements

Photon Rings

Ring Imaging Cerenkov

Dual solid radiator configuration

	Aerogel	NaF
Refraction Index	1.05	1.33
Opening angle (deg)	17.8	41.5
Velocity threshold	0.952	0.752

Photomultiplier matrix
10880 pixels
FE and light collection

RICH – Charge Measurement

RICH – Velocity measurement

Resolution per hit is the same for direct and reflected hits

TRD

Proton rejection >10² 1-300 GeV acceptance: 0.45m²sr

Choosen configuration for 60 cm height: 20 Layers each existing of:

- 22 mm fibre fleece
- Ø 6 mm straw tubes filled with Xe/CO₂ 80%/20%

12 layers in the bending plane 2 x 4 layers in the non-bending plane

TRD - The AMS detector @ CERN

November 23, 2007

TDR – test beam results

20 layer TRD detector in the test beam at CERN in 2000

3 million events of p,e, μ , π @ 5-250 GeV

TDR – Test Beam Results

TDR – test beam results (2010)

Electromagnetic Calorimeter

3D imaging calorimeter

ECAL: last subdetector crossed by particles from outer space

Particle ID (e.m showers vs. hadron cascades)
Energy measurement (e+,e-,γ) (up to 1TeV)
Trigger system: on non interacting photons

Electromagnetic Calorimeter

3D shower reconstruction

- Sampling calorimeter
- Pb/scintillating fibers structure

volume ratio Pb:fibers:glue : 60:34:6 dimensions : 658 × 658 × 166.5 mm³ weight : 498 kg

• Pile up of 9 "Superlayers"

10 000 fibers, $\phi = 1$ mm, distributed uniformly Inside 1,200 lb of lead

Ecal – Energy Linearity

6

Total Radiation Length $> 17 X_0$

Maximum visible energy given by the limit of non linearity of the FE readout (ie non linearity greater >3%)

Longitudinal profile at 1 TeV Longitudinal profile at 100 MeV

Fit parameters from Testbeam data 2007

Ecal variables for e/P rejection –TB 2010

Boosted decision tree technique applied on the dataset with TMVA on ECAL variables

AMS in Kennedy Space Center (SSPF)

Positron/electron event

Electron & Positron like at KSC

Photon Candidate (1)

 $|\text{Shower No 0 NHits 113 Energy} = 8.2\pm 0.21 \ \theta = 2.89 \ \phi = -2.48 \ \text{Coo} = (-24.57, 3.91, -149.72) \ \chi^2 = 2.62 \ \text{Asymm=0.04 Leak}_{\text{Side, Rear, Dead, Att, NonLin, S13, Orp}} = (0.00, 0.05, 0.00, -0.06, 0.00, 0.00, 0.00) \ \text{Max} = (-24.57, -24.$

Photon spectrum KSC

AMS 02 to the canister

$\Delta t = 100 \text{ ps}, \Delta x = 10 \text{ }\mu\text{m}, \Delta v/v = 0.001, \Delta E/E = 1-2 \%$

	e⊤		P He,Li,Be,Fe		γ	e+) – – – He, C
TRD		۲	r				Ŧ	Υ
TOF	۲	F F	ř	Ŧ		Ŧ	4.4	ř
Tracker		\sum		八				ノ
RICH			$\langle \cdots \rangle \longrightarrow$					
ECAL		****	₹				╾╾╾	¥
Physics example	Cosmic Ray Physics					Dark m	Antimatter	

Precision study on the property of cosmic rays

Antimatter (Anti He)

γ

Diffusion – B/C

δ index

Propagation parameters (diffusion coefficient)

10⁴ B > 100 GeV/n in 3 years

Indirect search for dark matter

positron signal : production and propagation

Positron

Positrons

April 2011

 Detector complete and tested (ESA,CERN,KSC)
Waiting for launch (19->29 April) and data (Launch+4)

Constraints from space

- \triangleright Weight : 7 tons (exp. LHC ~ 1000 tonnes)
- \triangleright Low consumption : 2 kW (conso fer électrique)
- ▷ Temperature: ± 50 °C
- No human assistance redundancy
- ⊳ Vacuum
- ⊳ Launch
- ▷ Tests (radiation, thermal, EMI and vibration)

→ AMS01, 1998 + Qualification Model and flight Model for each sub detectors

Ecal variables for e/P rejection –TB 2010

Variables based on the lateral and longitudinale e 180 GeV properties of the EM showers

> P 400 GeV

Associating the Dahas sensors

Linear dependence (HG)

