

The γ-ray sky after two years of the Fermi satellite

Jean Ballet (AIM, CEA/DSM/IRFU/SAp) on behalf of the Fermi LAT Collaboration

Marseille, April 4, 2011

The Fermi Observatory

Large Area Telescope (LAT):

- 20 MeV >300 GeV (including unexplored region 10-100 GeV)
- 2.4 sr FoV (scans entire sky every ~3hrs)
- 1 m² geometric area

Gamma-ray Burst Monitor (GBM)

- 8 keV 40 MeV
- views entire unocculted sky

 Large leap in all key capabilities, transforming our knowledge of the gamma-ray universe. Great discovery potential.

Launch!

Cape Canaveral 11 June 2008 at 12:05PM EDT

26 August 2008 NASA renames **GLAST** to Fermi

Operations guaranteed until 2013 NASA review every 2 years after that

The Fermi LAT 1FGL Source Catalog

Credit: Fermi Large Area Telescope Collaboration

Abdo et al 2010, ApJS 188, 405

Preparing the 2FGL source catalog

Fermi two-year all-sky map > 1 GeV

Credit: NASA/DOE/Fermi/LAT Collaboration

Modeling our Galaxy

Emission toward the **Galactic Ridge** can be modeled as a combination of:

- Pion-decay from cosmic-ray hadrons (red line)
- Bremsstrahlung from cosmic-ray electrons (cyan line)
- Inverse Compton from cosmic-ray electrons (green)
- Isotropic emission (black)
- Sources (purple dotted)

Definitely emits **neutrinos**, but not very hard

Starburst: lots of gas + lots of SNe and winds (\rightarrow large CR density) \rightarrow large π^0 production

M82: Abdo et al 2010, ApJ 709, L152

LMC: Abdo et al 2010, A&A 512, 7

Temporal properties of GRBs

- 18 LAT GRBs > 100 MeV
- Delayed GeV emission with respect to MeV
- Long-lived (100 1000 s)
- Clear evidence of spectral evolution
- No obvious high-energy break (γ-γ attenuation) implies large Lorentz factor
 > several hundred
- GeV/MeV fluence ratio larger in short GRBs

i Limits on Lorentz Invariance Violation

• GRB080916C

Gamma-ray Space Telescope

- Highest energy, ~ 13.2 GeV photon, detected 16.5 s after GBM trigger

– lower limit on the quantum gravity mass (assuming linear energy scaling and high energy photons emitted after GRB trigger):

 M_{QG} > 1.50 x 10¹⁸ GeV/c²

• GRB090510

Highest Energy, ~ 31 GeV photon detected 858 ms after onset of GBM emission

M_{QG}>1.42 x 10¹⁹ GeV/c² (>1.19 M_{Planck}!)

- rules out many n=1 scenarios

Rapid variability

- Automated search for flaring sources on 6 hour, 1 day and 1 week timescales.
 - LAT scientists perform follow-up analyses, produce ATels, and propose ToOs
- >100 Astronomers telegrams
 - Discovery of new gamma-ray blazars
 - Flares from known gamma-ray blazars

Gamma-ray Space Telescope

Blazars

Almost all galaxies contain a massive black hole

- 99% of them are (almost) silent (e.g. our Galaxy)
- 1% per cent is active (mostly radio-quiet AGNs): BH+disk: most of the emission in the UV-X-ray band
- 0.1% is radio loud: jets mostly visible in the radio

 M_{BH} of $10^7-10^9~M_{\rm o}$

- > 700 Fermi AGN
- Large association fraction thanks to good radio catalogs, known redshift for many
- About half BL Lacs (nearby, hard, jet-dominated) and half
 FSRQs (faraway, bright, softer, disk-dominated)
- Very variable
- Several MW campaigns to identify correlated variability
- Mainstream model: Inverse
 Compton on synchrotron or disk/torus photons
- Constraints on Extragalactic Background Light in optical/UV (also from GRBs)

Samma-ray

Extragalactic "diffuse" emission

Fermi Symposium, 11/02/09-11/05/09

Markus Ackermann for the LAT

AGN logN logS

- Careful correction for spectral dependence of detection threshold
- Distinct **break** around $F_{100} = 5 \ 10^{-8} \text{ ph/cm}^2/\text{s}$
- Total AGN contribution falls way short of explaining the isotropic emission
- Other sources, like starburst galaxies, undoubtedly contribute

Abdo et al 2010, ApJ 720, 435

Fermi-LAT electron-positron spectrum

- ~4.5 million candidate electrons above 20 GeV
- 544 candidate electrons in last energy bin (770-1000 GeV)

Pulsar origin of the bump?

Random variations of the **pulsar parameters** relevant for **e+e- production**

[injection spectrum, e+e- production efficiency, PWN "trapping" time]

Electron/positron emission from pulsars offers a viable interpretation of Fermi CRE data also consistent with the HESS and Pamela results But not the only one

Grasso et al. 2009 Astropart. Phys. 32, 140

The LAT Pulsar Sky

ം പ്രത്യം പ

Pulses at 1/10th Real Rate

Abdo et al 2009, Science 325, 840 Abdo et al 2009, Science 325, 848

99 Da

R.W. Romani, Sardinia 2010

30 Young Radio-selected

25 Young γ -selected

 6γ -sel MSP γ /R pulse

13 MSP Radio-selected14 γ-sel MSP R pulse

RX J1713.7-3946

Abdo et al 2011, accepted in ApJ ArXiv: 1103.5727

Brightest TeV SNR

Very faint Fermi source in a complicated region of the Galactic plane

Very hard (Γ = 1.5 +/- 0.1), not detected below 5 GeV

Extended, compatible with HESS image

Clearly below the extrapolation of hadronic models, in line with **leptonic** models

Does not mean that protons are absent, but that **density is low** (as indicated by absence of thermal X-rays). Molecular gas is nearby but not hit by the shock yet (no maser).

Other young SNRs (like Cas A) are not as hard and could be hadronic.

IC 443 and old SNRs

Older SNR, between 3 and 30 kyr

Extended, emission where **molecular clouds** interact with the SNR, does not follow radio contours

Break frequency at ~ 3 GeV, corresponding to **20 GeV** on proton spectrum.

Probably reflects the maximum energy reached by freshly accelerated particles Clearly **hadronic**, but soft (Γ = 2.9 at TeV) Requires $E_p \approx 10^{49}$ ergs for $n_{gas} = 100$ cm⁻³

W 51C (Abdo et al 2009, ApJ 706, L1; HESS detection)
W 28 (Abdo et al 2010, ApJ 718, 348; Aharonian et al 2008, A&A 481, 401)
W 44 (Abdo et al 2010, Science 327, 1103; no TeV)
W 49 B (Abdo et al 2010, ApJ 722, 1303; recent HESS detection)
3C 391, CTB 37 A, G349.7+0.2, G8.7-0.1 (Castro & Slane 2010, ApJ 717, 372)
Cygnus Loop (submitted)

Summary

- Sky survey every 3 hours until 2013, possibly further
- 1451 sources in 1FGL catalog, 2FGL in the works
- Some 700 blazars, from BL Lacs to FSRQs
- γ–ray background made up of AGN, galaxies and ?
- 4 very bright **γ-ray bursts**, several fainter ones
- > 70 γ -ray **pulsars** (up from 6), 20 ms pulsars in unidentified sources
- Hadrons in several old SNRs (W28, W44, W49B, W51C, IC443)
- 4 X-ray binaries (LSI +61 303, LS 5039, Cyg X-3, 1FGL J1018.6-5856)
- Dark matter constraints on lines and dwarf spheroidals
- About 100 papers published at March 2011
- More at 3rd Fermi Symposium, May 9-12 in Rome

Pulsar emission model

In the simplest model, the emission should depend on 4 parameters: spin period, magnetic field, magnetic dipole inclination, and viewing angle

Space Telescope

radio emission cone Iuminosity derived from rotational energy $\mathsf{E}_{\rm rot} = \frac{1}{2} \mathsf{I} \Omega^2$ obs 0 GJ = 0 $\mathbf{E} = -B^2 \mathbf{R}^6 \Omega^4 / \mathbf{c}^3$ derived parameters: NS rotational age : $\tau = \Omega/2\overline{\Omega}$ B field: $B = 3.2 \times 10^{19} (PP)^{1/2} G$ γ -ray emission fan beam spin-down power: $L = I\Omega\overline{\Omega}$ Young pulsars P ≈ 0.1 s last open B-field line $B \approx 10^{12} G$

light cylinder

As for EGRET, the detected pulsars are relatively close and highly energetic.

The detected pulsars also have the highest values of magnetic field at the light cylinder, B_{LC} .

Both detected normal PSRs and MSPs have comparable B_{LC} values. Similar emission mechanisms operating?

Pulsar catalog: arXiv:0910.1608

Cas A spectrum

Young SNR (330 yrs) LAT spectrum connects well with MAGIC TeV γ-rays No sign for a cutoff (as in pulsars) Bremsstrahlung + Inverse Compton (Atoyan et al 2000)

Can also be fitted by pion decay (Berezhko et al 2003)

Gamma-ray Space Telescope

W51C spectrum

One of the most luminous gamma-ray sources $L = 1 \times 10^{36} (D/6 \text{ kpc})^2 \text{ erg s}^{-1}$ Spectral steepening in the LAT range

 π^0 -decay model can reasonably explain the data, requires proton break at ~ 20 GeV Leptonic scenarios require large amounts of electrons

Gamma-ray

GRB090510 : first time M_{QG}>M_{planck}

Estimate lower limit of $M_{QG,1}$ for various Δt , ΔE

 $\frac{\text{Most conservative case :}}{31 \text{GeV photon starts from any <1 MeV}}$ $\frac{\text{MeV}}{\text{emission}} \quad \Delta t < 859 \text{ ms,}$ $\frac{\text{M}_{\text{QG},1}/\text{M}_{\text{plank}} > 1.19$

Our new limit : $M_{QG,1}/M_{plank}$ > several is much stronger than the previous result $(M_{QG,1}/M_{plank} > 0.1 : GRB080916C ;Abdo+09)$ Greatly constrain the quantum gravity model (n=1) z = 0.9, short GRB

Abdo et al. 2009, Nature 462, 331

Continuum spectrum with cutoff at $M\chi$

Spectral line at Mχ (for γγ)

- Detection of prompt annihilation into γγ (γZ⁰) would provide smoking gun for dark matter annihilation
- ✓ Requires best energy resolution
- ✓ However, annihilation fraction in the range 10⁻³-10⁻⁴ (depending on the model)

Depends on DM density squared

Gamma-ray pace Telescope Two different scenarios: UED vs SUSY

Consider the photon spectrum from 500 GeV WIMP annihilation in SUSY and in UED:

- ✓ UED: photons mostly from lepton bremsstrahlung
- ✓ SUSY: photons mostly from b quark hadronization and then decay, energy spread through many final states lower photon energy. p-wave dominated cross-section yields lower photon fluxes for equal masses

Search for DM in dwarf Spheroidals

Accepted for publication, ApJ arXiv preprint: 1001.4531

Exclusion regions cutting into interesting parameter space for some WIMP models

WIMPs with large annihilation crosssections into leptonic final states have been invoked to partially explain cosmic-ray data as the byproduct of dark matter annihilation

More on TeV connections

- Milagro (TeV) observations: 14/34 Galactic BSL sources with 3 sigma Milagro excess.
- 9/14 are gamma-ray pulsars
- All 6 previously known Milagro sources associated with Fermi Pulsars.

