

SNR and molecular cloud interactions: new HESS/Fermi-LAT results

Jérémie MÉHAULT

LUPM - Montpellier

4th - 6th April 2011

From neutrino to multimessenger astronomy – Marseille

Jérémie MÉHAULT (LUPM - Montpellier)

Interaction SNR/MC

4th - 6th April 2011 1/15

Contents

Massive stars born in dense clouds

OH maser as shock tracer

Gamma-ray detection from shocked cloud • SNR IC443

SNR W44

SNR W51C

Detailed study at TeV energy

W51C Fermi update

Conclusion

Molecular clouds as nurseries for massive stars

Eagle Nebula - Hubble space telescope

- Interstellar medium not homogeneous
- Temperature of cloud: 10 100 K
- Density inside cloud: 10² 10⁶ cm⁻³
- Jean's Mass: $M_J \sim 10^5 \ {
 m M}_{\odot}$
- Free fall time ($R\sim$ 10 pc): $au\sim$ 10 6 yrs

Molecular clouds as nurseries for massive stars

- Massive star born in OB star association
- They die in their progenitor cloud
- Size of supernova remnant (SNR):
 - ► 500 yrs → 5 pc
 - ▶ 1000 yrs → 10 pc
 - 20000 yrs \rightarrow 30 pc
- If distance ~ 5 kpc: SNR size is 0.06° at 500 yrs
- \Rightarrow HESS angular resolution: $> 0.06^{\circ}$

- SNR MORPHOLOGY CAN BE PROBED IN DETAIL - MWL CORRELATION STUDIES

SNR shock waves efficient accelerators?

- $p p \rightarrow \pi^0 X$ then $\pi^0 \rightarrow \gamma \gamma$
- Illuminated clouds: CRs escaped from accelerator (see Stefano's talk)
- ▷ Shocked cloud ⇒ interaction SNR/MC (example of SNR/¹³CO)

• Protons in cloud accelerated by shock wave (Fermi acceleration)

Need a dense target to increase collision rate

Jérémie MÉHAULT (LUPM - Montpellier)

Interaction SNR/MC

4th - 6th April 2011 5/15

SNR/MC Interaction - OH maser (P. Lockett et al 1999)

- SNR near molecular cloud
- Shock wave \Rightarrow pumping OH radical
- OH emission at 1720 MHz
- OH masers behind the shock

• Particular environment needed for stimulated emission:

- ▶ Temperature: *T* ∈ [50; 125] K
- H₂ density of shocked material: $n_{H_2} \in [10^4; 5.10^5] \text{ cm}^{-3}$
- Weakly ionised medium: $n/n_H < 10^{-4}$
- OH column density: $n_{OH} \in [10^{16}; 10^{17}] \text{ cm}^{-2}$

SNR W44 as seen by HESS and Fermi-LAT

- Faint VHE γ-ray coincident with pulsar (black cross) ⇒ need more data
- HE γ-ray coincident with shell and OH masers (white crosses)

Jérémie MÉHAULT (LUPM - Montpellier)

Interaction SNR/MC

4th - 6th April 2011 7/15

W44 Spectral Energy Distribution (A.A. Abdo et al 2010)

- Only hadronic scenario can explain it
- Density of ambiant medium $\gtrsim 5~{
 m cm}^{-3}$
- Shocked material density $\in [10^3; 10^5]$ cm⁻³
- $\bullet\,$ Cloud estimated mass: $\sim 10^6~M_{\odot}$

Jérémie MÉHAULT (LUPM - Montpellier)

SNR W51C - Detailed study at TeV energy

- 2 counterparts:
 - pulsar wind nebula (open cross)
 - shocked molecular cloud (white contours) → OH maser (triangle)

- Very efficient analysis method:
 - hard photons selection
 - better angular resolution
- Maximum excess compatible with cloud and OH maser

Interaction SNR/MC

SNR W51C - Detailed study at TeV energy

How many excesses?

- Profile perpendicular to the cloud ⇒ 2 emitters!
- Each excess coincident with a counterpart

SNR W51C

- 13 months Fermi-LAT data
- HE γ -ray count map for $E_{\gamma} \in [2; 10]$ GeV
- Extended emission centered on W51C

W51C Spectral Energy Distribution (A.A. Abdo et al 2010)

- Hadron-dominated scenario explain γ-ray and radio emissions
- Density of ambiant medium needed: \sim 10 cm⁻³
- $\bullet\,$ Cloud estimated mass: $10^4~M_{\odot}$

SNR W51C Fermi update

- 24 months Fermi-LAT data
- HE γ -ray count map for $E_{\gamma} \in [2; 10]$ GeV
- Maximum GeV excess centered on cloud

Can we detect more examples? (J.W. Hewitt et al 2009)

\triangleright OH maser and/or γ -ray emission for \sim 10% of SNR

1	h	SNP	Diameter	Distance
1	0	SINK	()	(kna)
		-		(kpc)
{SNR	+ OH mas	er}+gam ma-	ray emission	associated
6.4	-0.1	W28	42	2.0
34.7	-0.4	W44	30	2.5
49.2	-0.7	W51 C	30	6
189.1	+3.0	IC 443	50	1.5
{SNR +	OH mase	r} + gamma-r	ay emission n	ot associated
0.0	+0.0	SgrA East	2.5	8.5
5.7	-0.0	-	9	3.2
8.7	-0.1	W30	45	3.9
337.8	-0.1	Kes 41	5	12.3
348.5	+0.1	CTB 37A	10	11.3
359.1	-0.5		10	5.0
{SN	NR + OH m	naser} withou	t gamma-ray	emission
1.0	-0.1	Sgr D SNR	8	8.5
1.4	-0.1		10	8.5
5.4	-1.2	Duck	35	5.2
9.7	-0.0		11	4.7
16.7	+0.1		4	2/14
21.8	-0.6	Kes 69	20	5.2
31.9	-0.0	3C 391	8	9
32.8	-0.1	Kes 78	20	5.5/8.5
337.0	-0.1	CTB 33	3	11
346.6	-0.2		8	11
348.5	-0.0		10	13.7
349.7	+0.2		2	>11
357.7	+0.3	Square	24	6.4
357.7	-0.1	Tornado	5	>6

- 4 interacting SNRs known
- Not clear for 6 SNRs
- 14 SNRs without γ -ray emission
 - Many other γ -ray excesses coincident with {SNR + OH maser} possible
 - γ -rays detectors with better sensitivity
- Needed to find the cosmic rays origin

Conclusion

- Massive stars born in molecular cloud
- SNR in dense interstellar medium
- ▷ Proton acceleration ⇒ Proton-Proton collision
- γ -ray produced by π^0 decay
- OH maser as tracer of shocked material
- Most significant cases of interaction SNR/MC with γ-ray emission detected
 - ▶ IC443, W44 W51C
 - Not shown here: W28 and G359.1-0.5
- W51C:
 - Now possible to separate TeV emitter!
 - GeV emission coincident with TeV and maser
- MWL very important to constrain scenario
- 10% of SNR with OH maser: other discoveries !

Jérémie MÉHAULT (LUPM - Montpellier)

Interaction SNR/MC

Conclusion

- Massive stars born in molecular cloud
- SNR in dense interstellar medium
- ▷ Proton acceleration ⇒ Proton-Proton collision
- γ -ray produced by π^0 decay
- OH maser as tracer of shocked material
- Most significant cases of interaction SNR/MC with γ-ray emission detected
 - IC443, W44 W51C
 - Not shown here: W28 and G359.1-0.5
- W51C:
 - Now possible to separate TeV emitter!
 - GeV emission coincident with TeV and maser
- MWL very important to constrain scenario
- 10% of SNR with OH maser: other discoveries !

Interaction SNR/MC