The Cherenkov Telescope Array Project

- CTA: motivation and performance goals
- Detecting atmospheric Cherenkov radiation
- Performance of imaging atmospheric Cherenkov telescope arrays
- The CTA concept
 - Large telescopes
 - Medium telescopes
 - Small telescopes
- Mirrors
- Sensors
- Summary

- July 2010.
 113 TeV γ-ray
 - sources.
 - ♦ 72 galactic.
 - 41 extragalactic.
 - 109 found with IACTs.
 - Progress requires improved sensitivity, better energy and angular resolution, larger area...

- Aim for factor of 10 improvement in sensitivity.
- Compare HESS ~ 500 hour image of section of galactic plane...

...with expectation with increased sensitivity, same exposure.

Expect to observe around 1000 sources (galactic and extra-galactic).

- Improve angular resolution by factor ~ 5.
- Substructure of SNR shock fronts can then be resolved:

Resolution 0.02 °.

- Better understand energy dependent morphology of pulsar wind nebulae.
- HESS J 1825-137, PWN size decreases with energy:

- Increased sensitivity allows mapping of activity on sub-minute timescales.
- E.g. blazar PKS 2155-304 (HESS):

- Study size of emission regions around AGNs, quantum gravity.
- GRB detection, fast slewing, large FoV needed.

- Southern array:
 - Galactic and extragalactic sources.
 - ◆ 10 GeV...100 TeV.
 - ♦ Angular resolution 0.02...0.2°.
- Northern array:
 - Mainly extragalactic sources.
 - ◆ 10 GeV...1 TeV.

Detecting Cherenkov radiation from EM showers

- VHE γ causes shower in atmosphere with max. at height ~ 10 km.
- Cherenkov light from e^{\pm} , angle ~ 1° .
- Light pool on ground, radius ~ 120 m.
- Photomultiplier efficiency ~ 20%:
- $E_{\gamma} = 100 \text{ GeV}, \sim 1 \text{ p.e.}/\text{m}^2 \text{ in few ns.}$
- $E_{\gamma} = 10 \text{ TeV}, \sim 10^3 \text{ p.e.}/\text{m}^2 \text{ in} \sim 100 \text{ ns}.$
- Limiting factors:
 - E_γ < 100 GeV, night sky background.
 - $E_{\gamma} = 0.1...5$ TeV, cosmic ray background (γ /h separation).
 - $E_{\gamma} > 5$ TeV, rate.
 - Need array of different telescopes.

- Concentrate here on instrumentation for CTA southern site.
- Simulate large array with 275 telescopes of 5 different sizes.
- Select sub-sets of this array.
- Obey (approx.) constraint: construction cost ~ 80 M€.
- Study performance of these sub-arrays.

Examples of sub-arrays:

Performance measure: integral sensitivity for point sources, 50 hour exposure.

 1...2 arcmin. resolution achieved for E > 1 TeV. Performance measure: energy res.

 Energy resolution 5...10% in TeV energy range.

The Cherenkov Telescope Array concept

Low energy Few 24 m telescopes 4...5° FoV 2000...3000 pixels ~ 0.1° Medium energy About twenty 12 m telescopes 6...8° FoV ~ 2000 pixels ~ 0.18° High energy Fifty + 4...7 m telescopes $8...10^{\circ}$ FoV 1000...2000 pixels $\sim 0.2^{\circ}...0.3^{\circ}$

Large size telescope design

- Diameter 24 m.
- Focal length ~ 34 m.
- (Modified) Davies-Cotton optics.
- Support structure carbon fibre.
- Mount on rails.

Medium size telescope design – take one

- Diameter ~ 12 m.
- Focal length ~ 17 m.
- (Modified) Davies-Cotton optics.
- Camera support carbon fibre, dish steel/aluminium.
- Camera ~ 2 t.
- Several alternative designs.
- Central mount cheaper.

Medium size telescope design – take two

- Schwarzschild-Couder optics, better correction of aberrations at large field angles.
- Primary ~ 9.4 m, secondary
 ~ 6.6 m diameter.
- Effective focal length ~ 5 m.
- Allows use of small pixels,
 e.g. multi-anode photomultipliers, silicon PMs.
- Proposed multi-pixel camera provides coverage to large field angles and 0.05...0.1° pixel angular resolution.
- Advantages in γ /h separation?

Small size telescope design – take one

- Davies-Cotton design.
- Diameter ~ 7 m.
- Focal length ~ 10 m.

- Support structure steel.
- Camera ~ 2 t.
- Several designs common feature camera cost dominates.

Small size telescope design – take two

- Investigate use of cheaper MAPM or SiPM based camera.
- Telescope then needs short focal length so ~ $6 \times 6 \text{ mm}^2$ pixels match required angular resolution (~ 0.2°).
- Need reasonable area, hence "fast" focal ratio (f = F/D small).
- Require sophisticated optics to correct for aberrations – two mirrors.
- DC structure costs ~ $1.7 \text{ k} \in \times \text{D}[\text{m}]^{2.7}$, assume DM cost $3 \times \text{DC}$.
- Mirrors/actuators for DC cost
 ~ 3 k€/m², for DM assume 3 × DC.
- Cameras have ~ 2000 pixels, DC costs
 ~€400/pixel and DM ~ €100/pixel.

Resulting costs:

Equivalent diameter (m)

For equivalent diameter (inc. effects of obscuration and reflection) below ~ 6 m, DM telescopes cheaper solution.

SST – dual mirror design

- Can dual mirror solution provide required performance in array?
- C.f. 7 m Davies-Cotton and 4 m dual mirror arrays, each €20M total cost.
- Cheaper dual mirror solution allows more telescopes (red dots)...

 ...which leads to increased multiplicity and higher angular resolution for dual mirror array:

 Physics benefits, e.g. in studies of morphology of SNRs.

SST – dual mirror optics

- Can we build a dual mirror telescope which matches the required 0.2° angular resolution to pixel sizes of a few millimetres?
- Optics studies show can achieve PSFs of < 6 mm for field angles up to about $\delta = 4.5^{\circ}$ with telescope parameters:
 - Focal length F = 2.283 m.
 - Primary diameter $D_p = 4$ m.
 - Secondary diameter $D_s = 2$ m.
 - Camera diameter $D_{cam} = 0.36$ m.
 - Dist. Prim. to Sec. 3.56 m.
 - Dist. Sec to Cam. 0.51 m.
 - Camera convex, $\rho_{cam} = 1$ m.

PSFs

Dual Mirror SST structure

• Conventional design:

• "Cardan joint" design:

Davies Cotton with Winston Cones and SiPMs

- The project manager's nightmare a good idea that comes along late in the day!
- Use SiPMs because they are efficient and cheaper than PMs.
- Attach to solid Winston Cones.
- Size, angular acceptance of SiPMs (approx. π!) and cone refractive index define relationship between "input" angular acceptance and dimensions of cones.
- With camera FoV, this determines parameters of matching Davies-Cotton telescope.
- E.g. if pixel size 5 × 5 mm² and 0.16°, mirror diameter ~ 3.5 m².

Mirrors

Approach that will work for LST and MST is cold slumping:

SST mirrors

- Not for DM SST stresses too high.
- Alternatives:
 - Electroforming.
 - Grinding/polishing.
 - Machining.
- None good for mass production!
- Mix of hot and cold slumping now under investigation.
- Hot slumping used e.g. in car industry.

- Approximate costs:
 - Mould: 580 × 580 mm², ~ 5 m rad.
 of curvature, € 8500 (one-off!).
 - Glass/hot slumping: ~ € 300/piece.
 - Cold slumping: $2 \text{ k} \in /\text{m}^2$.
- Tolerable cost increase over initial aggressive estimates.

Sensors – photomultipliers

Improvements in conventional photomultipliers will benefit CTA's "conventional" cameras.

 CTA programme with Hamamatsu, Electron Tubes and Photonis has resulted in significant improvements in after-pulsing and QE.

Sensors – MAPMs

MAPMs have reasonable quantum efficiency:

- Other good features:
 - ♦ High gain (10⁶).
 - Very low after-pulsing and dark count rates, low cross-talk.
 - Easy relative and absolute calibration.

- Concerns for DM SST:
 - Response of MAPMs to large angle photons.
 - May need to reduce gain (10⁶ → 10⁵) in high night sky background conditions.
- Further study needed, but no showstoppers so far...

Sensors – Si PMs

- Silicon photomultipliers, reverse biased p-n junction.
- Photon liberates initial e-h pair.
- High bias voltage leads to "shower" of electrons and holes and significant current pulse.
- "Quench" by restricting bias voltage.
- Each pixel many cells:

Can have good QE...

- ...but need p-in-n to ensure photon induced showers close to Si surface for UV detection.
- Hamamatsu make "MPPC", QE about 20% in Cherenkov wavelength range.

Sensors – Si PMs

- But there is a problem.
- Photons are generated in the showering process and these can trigger neighbouring cells in a pixel:

- Solution (e.g. ST Microelectronics) is optical trench between cells.
- Available, but so far only for n-in-p devices.
- Hope soon to have p-in-n SiPMs with optical trenches.

• Optical trench between cells of SiPM:

Summary

- Next steps in γ-ray astronomy/ astrophysics require improved instruments – CTA.
- CTA could be built now, using existing technologies.

- But there are areas where good ideas could lead to better performance per €/\$/£.
- Want to build CTA on a tight timescale...

	07	08	09	10	11	12	13	14	15
Array layout									
Telescope design									
Component prototypes									
Telescope prototype					Pro	Dtotype			
Array construction								Arra	
Partial operation									.,

...avoid both incompetence and L.W.F.s!

