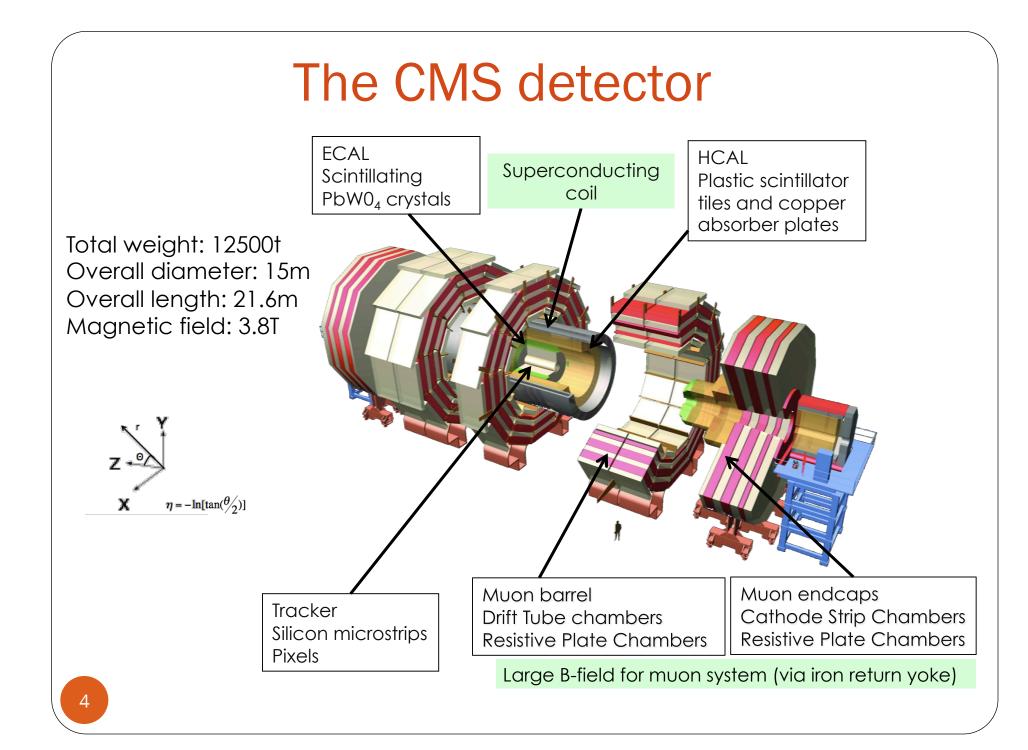
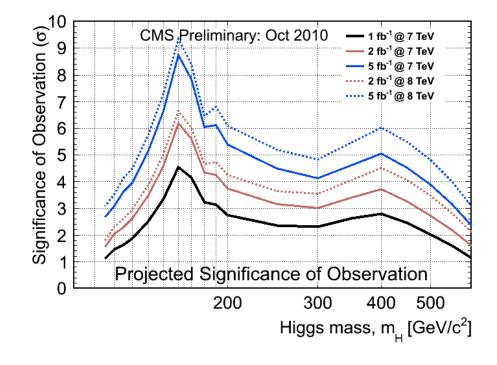


Search for Higgs Boson Decays to Two W Bosons in the Fully Leptonic Final State at $\sqrt{s} = 7$ TeV

Vesna Cuplov

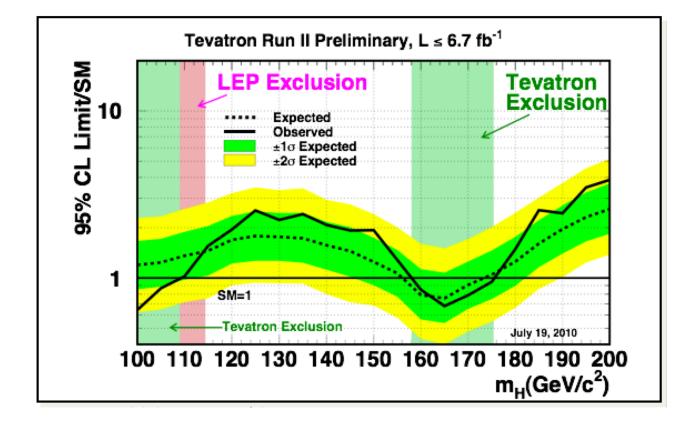

Centre de Physique des Particules de Marseille 14 Mars 2011

Outline


- The CMS experiment
- Motivation for a Higgs boson search
- Signature and Main Backgrounds
- ♦ Standard Model W⁺W⁻ cross section measurement
- + Limits on Anomalous Triple Gauge Couplings WWZ and WWγ
- \bullet Search for $H \to WW \to 2\ell 2\nu$
- Sensitivity and limits for $\sigma_H \times BR(H \to WW \to 2\ell 2\nu)$ in the SM and in a 4th fermions generation scenario
- ✦ Conclusion

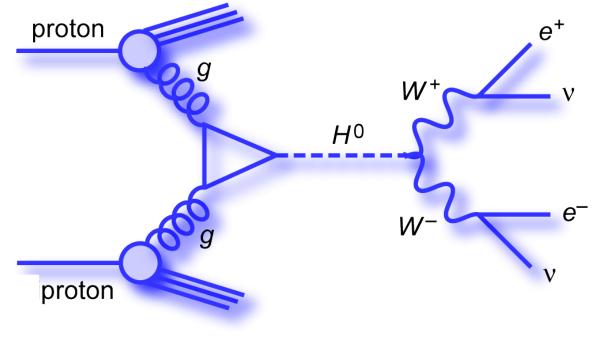
The LHC proton-proton collider at center of mass energy of 7TeV

Discovering the Standard Model

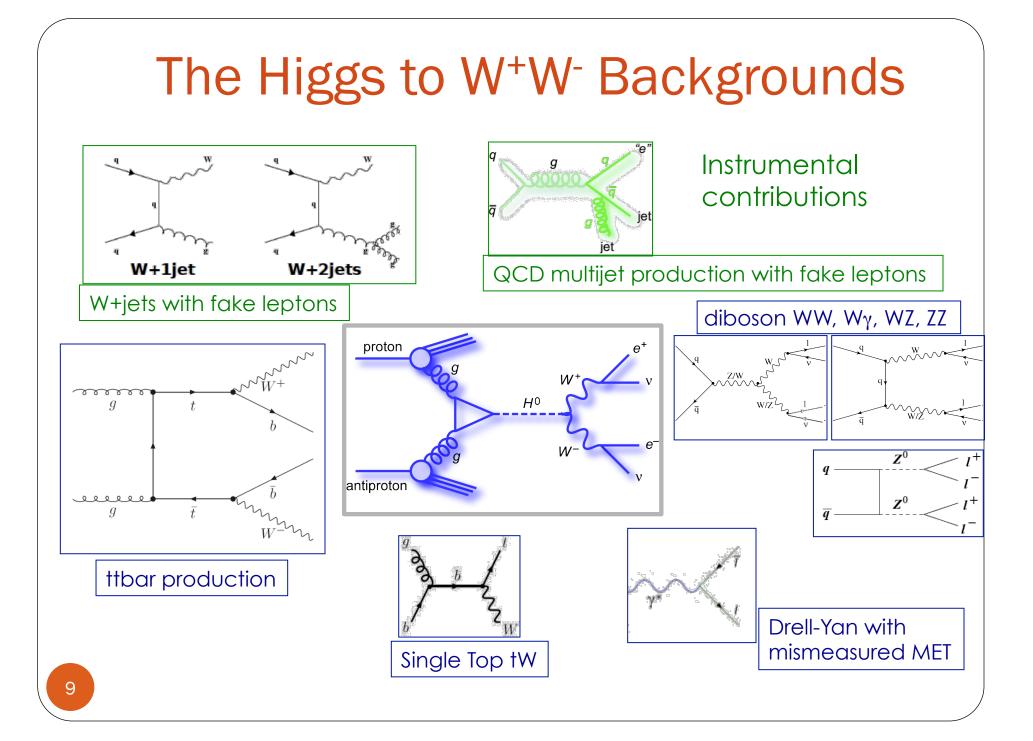


SM describes the majority of High Energy Physics data

Origin of masses is described by the spontaneous breaking of EWK symmetry caused by a scalar field: Higgs.

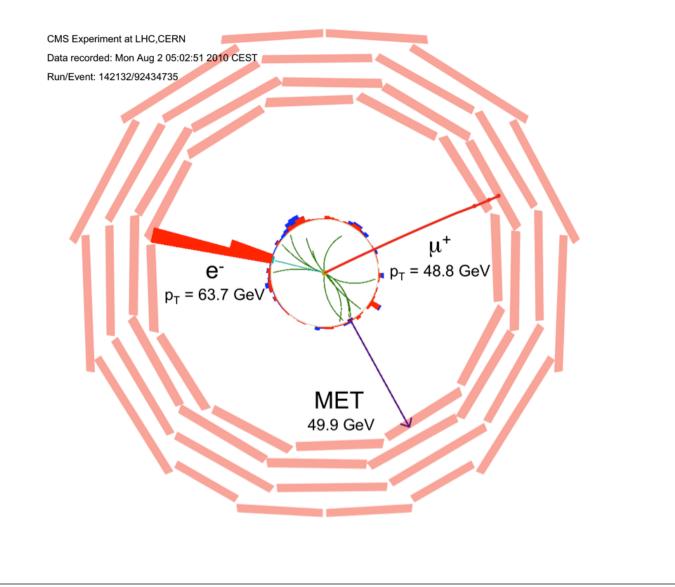

With 1 fb⁻¹ at 7 TeV "ATLAS + CMS" projected 3σ sensitivity for $135 < m_{\rm H} < 475 \ {\rm GeV/c^2}$

Higgs exclusion ranges



The SM Higgs at LHC at 7TeV Higgs production modes Higgs decay modes 100 $\begin{array}{c} \sigma(\mathbf{p}\mathbf{p} \rightarrow \mathbf{H} + \mathbf{X}) \ [\mathbf{p}\mathbf{b}] \\ \sqrt{\mathbf{s}} = \mathbf{7} \ \mathbf{TeV} \end{array}$ ww 1 bb **MSTW2008** $gg \rightarrow H$ $BR(H \to X)$ 10 $qq \rightarrow qqH$ 0.1 $\tau^+\tau$ qq→WH gg aā→ZH $p\bar{p} \rightarrow t\bar{t}H$ 0.1 $\mathbf{Z}\mathbf{Z}$ 0.01 120180 2000.01 100 140160140 160 180 200 115300 400 500 M_H [GeV] $M_{H} [GeV]$ Dominant decay mode at high Dominant production: gluon-gluon fusion mass: 0000 $H \rightarrow WW. ZZ$ Hq 0000 J. Baglio and A. Djouadi arXiv:1012.0530

The Higgs to W⁺W⁻ Signature



- BR(gg→H)≈1 for $2M_W \le m_H \le 2M_Z$
- 2 isolated leptons
- Significant MET
- No jet activity

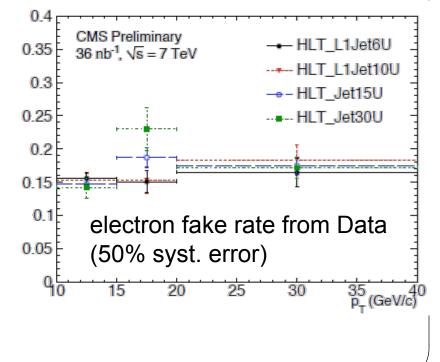
Standard Model W⁺W⁻ Cross Section Measurement

CMS W⁺W⁻ candidate

- 2 opposite sign isolated leptons (e, μ) with p_T >20GeV/c
- Reject low mass resonances $m_{\parallel} > 12 \text{ GeV/c}^2$
- Significant amount of MET to reject Drell-Yan and QCD
- Reject events consistent with Z mass
- Jet veto to reject Top background
- Top veto to further reject Top background
- Reject WZ and ZZ: Veto events with more than 2 well identified isolated leptons
 - → See backup for details

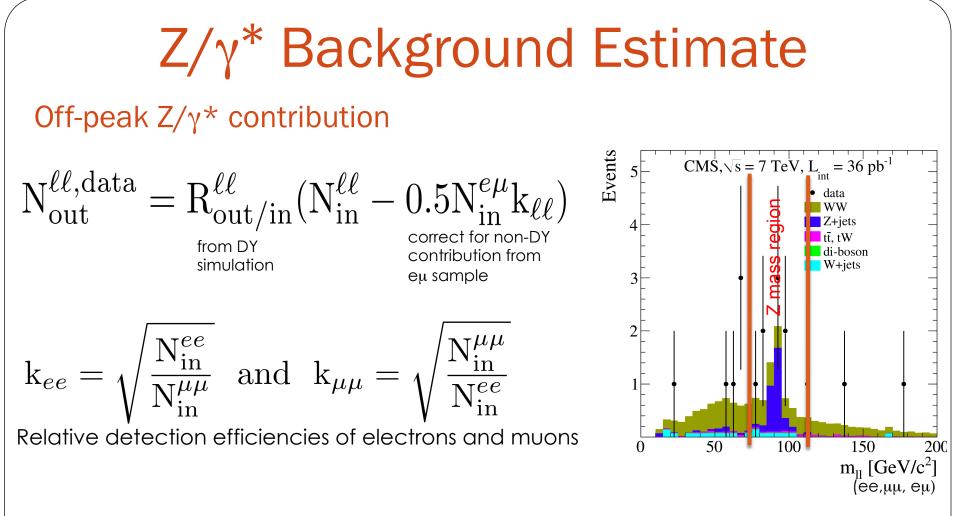
Expected yields after W⁺W⁻ selection

	MC s	MC statistical uncertainty							
final state	data	99	→ WW	$gg \rightarrow WW$		other bkgs.		WZ	ZZ
μμ	1	2.18	± 0.02	0.12 ± 0.01		0.42 ± 0.07		0.06 ± 0.01	0.05 ± 0.01
ee	2	1.47	7 ± 0.01	0.09 ± 0.01		0.75 ± 0.19		0.04 ± 0.01	0.04 ± 0.01
eµ	10	6.63	3 ± 0.04	0.28 ± 0.01		$1.54 \pm$	0.26	0.13 ± 0.01	0.01 ± 0.01
all	13	10.2	8 ± 0.05	0.48 ± 0.01		2.71 ± 0.33		0.23 ± 0.01	0.10 ± 0.01
final state	tī		tW	tW t(t-a		an)/t(s–chan)		$DY \rightarrow \ell\ell$	W + jets
μμ	0.13 ± 0.02		0.06 ± 0.01		0.00 ± 0.00		0.12 ± 0.06	0.00 ± 0.00	
ee	0.10 ± 0.02 0		0.04 ± 0	0.04 ± 0.01		0.00 ± 0.00		0.09 ± 0.05	0.44 ± 0.18
еµ	$0.25 \pm$	0.25 ± 0.03 0.1		.19 ± 0.01		0.01 ± 0.01		0.15 ± 0.07	0.80 ± 0.24
all	0.48 ± 0.05 0.2		0.29 ± 0	9 ± 0.02 0.01		1 ± 0.01		0.36 ± 0.10	1.24 ± 0.30


integrated luminosity of 36 pb⁻¹

13 events selected, good agreement with expectations

W+jets and QCD Background Estimations using Data driven technique: Fake rate method


Fake Lepton Background Method

- Define loose lepton-like objects (relax some ID and Isolation cuts)
- Efficiency for fake objects to pass analysis (tight) lepton selection = fake rate (FR)
- FR measured in jet-triggered data (fake enriched data)
- Apply to data events where one (both) leptons pass loose, but fail tight lepton selection:
 1) W+Jets: 1 tight plus 1 fake lepton
 2) QCD: 2 fake leptons

15

Drell-Yan Background Estimation using Data driven technique: Z mass window

- Ratio of yield outside to inside Z mass window from DY MC
- Extrapolate Z/γ^* background to outside the Z mass window
- Systematics reflects dependence on MET cut
- 17

Total Background: Summary

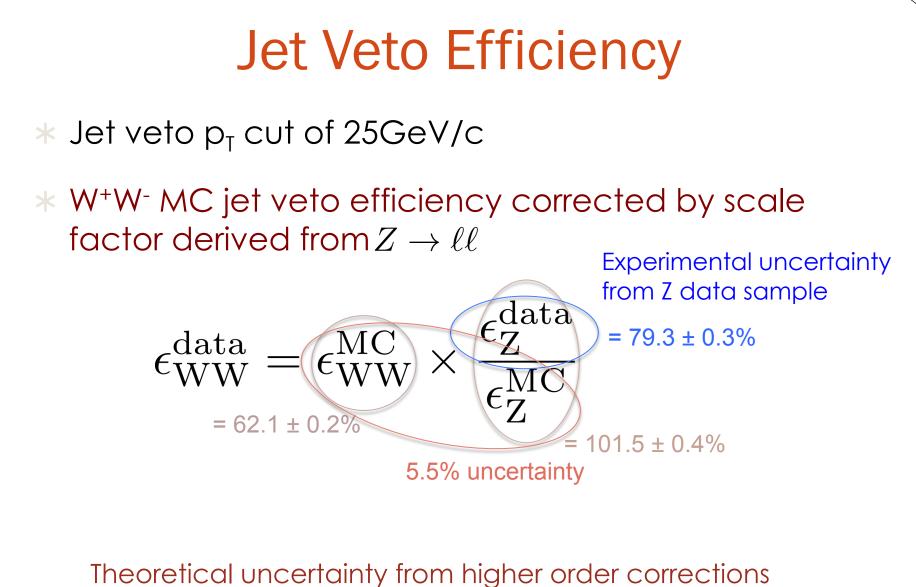
Process	Events		
W+jets + QCD	$1.70 \pm 0.40 \pm 0.70$		
$t\bar{t} + tW$	$0.77 \pm 0.05 \pm 0.77$		
$W\gamma$	$0.31 \pm 0.04 \pm 0.05$		
$Z + WZ + ZZ \rightarrow e^+e^-/\mu^+\mu^-$	$0.20 \pm 0.20 \pm 0.30$		
WZ + ZZ, leptons not from the same boson	$0.22 \pm 0.01 \pm 0.04$		
$Z/\gamma^* ightarrow au^+ au^-$	$0.09 \pm 0.05 \pm 0.09$		
Total	$3.29 \pm 0.45 \pm 1.09$		

Wy suppressed by photon conversion veto (see backup slides)

Efficiencies

- Lepton Selection Efficiency
- Jet Veto Efficiency
- Trigger Efficiency

Lepton Selection Efficiency

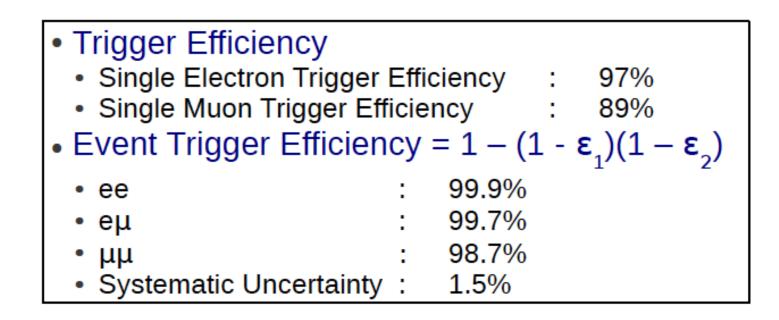

- * Tag and probe method applied on selected $Z \to \ell \ell$ events in MC and Data
- * Lepton Selection Efficiency Scale factors: Overall weak pT and η dependence
- Lepton Selection efficiency in W⁺W⁻ data is extracted from W⁺W⁻ MC and corrected by data to simulation scale factor:

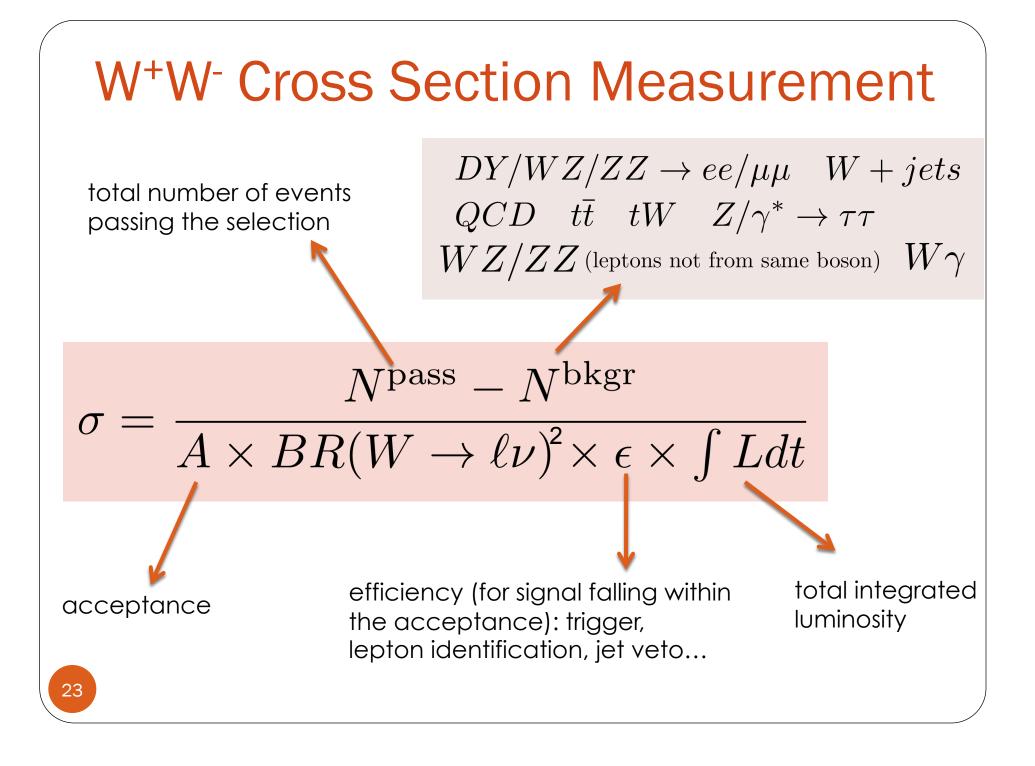
Electron

- Barrel : 0.969 ± 0.019
- Endcap: 0.992 ± 0.026

Muon

consistent with 1.00 (±0.01)




Estimate by varying renormalization and factorization scale

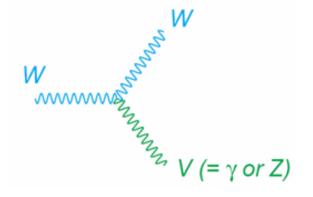
21

Single Lepton Trigger Efficiency

 $_{\odot}$ Measured for leptons passing identification and isolation in a Z control sample $_{\odot}$ Probe is matched to the relevant HLT trigger object candidate within a cone of $\Delta R < 0.1$.

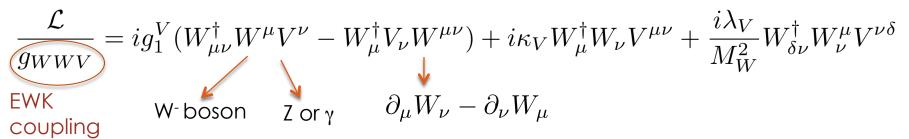
WW Cross Section Measurement Results

We consider both $qq \rightarrow W^+W^-$ and $gg \rightarrow W^+W^$ processes as signal with average efficiency of 6.34 ± 0.46 (%)


$$\sigma_{WW \to 2\ell 2\nu} = 4.3 \pm 1.6 (\text{stat.}) \pm 0.6 (\text{syst.}) \pm 0.5 (\text{lumi.}) \text{pb}$$

 $\sigma_{WW} = 41.1 \pm 15.3 (\text{stat.}) \pm 5.8 (\text{syst.}) \pm 4.5 (\text{lumi.}) \text{pb}$

Limits on WWy and WWZ Anomalous Triple Gauge Couplings


Self-interaction Couplings

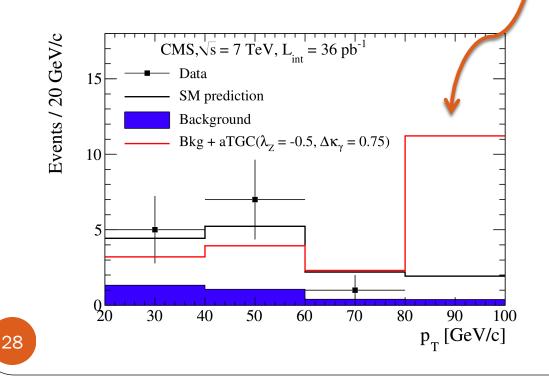
• Self-interaction between gauge bosons

- $pp \rightarrow W^+W^-$ governed by WWZ and WW_Y couplings
- Any deviation in measured values from the SM predictions would be indications of new physics (aTGCs = Anomalous Triple Gauge Couplings)

WWZ and WWy Interaction Lagrangian

Standard Model: $\lambda_{Z} = \lambda_{\gamma} = 0$ and $g_{1}^{Z} = \kappa_{Z} = \kappa_{\gamma} = 1$

With non-Standard Model couplings, the interaction diverges at high energies (scaling is necessary):

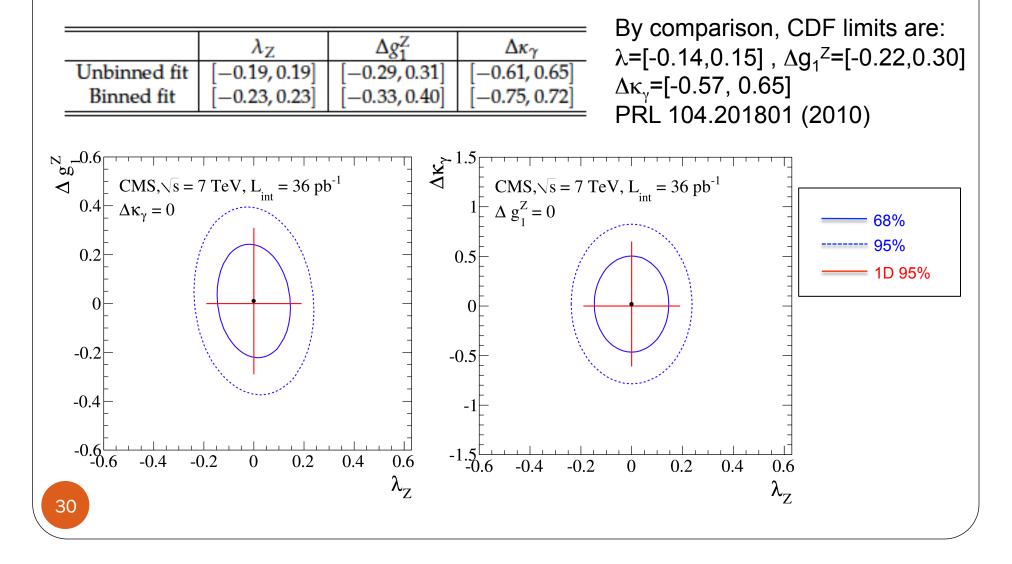

$$\alpha(\hat{s}) = \frac{\alpha_0}{(1+\hat{s}/\Lambda^2)^2}$$
 Low energy approximation of the couplings of the couplings Square of the WW invariant mass. Form factor scale (A=2TeV)

27

Leading Lepton p_T

Anomalous coupling gives $\underline{\text{enhancement}}$ of W+W- cross section at large \hat{S} .

Excess of events with high momentum leptons from W decays.



Compare the leading lepton p_T spectrum in data to the signal-plus-background hypothesis

Anomalous couplings and Likelihood Formalism

- Derive limits on aTGCs by fitting to leading lepton pT
- Reduction after parametrization: $\Delta \kappa_{\gamma} = \kappa_{\gamma}$ -1, $\lambda = \lambda_{\gamma} = \lambda_{Z}$ and $\Delta g_{1}{}^{Z} = g_{1}{}^{Z}$ -1
- W⁺W⁻ aTGC signal samples modeled using SHERPA/Pythia
- Samples obtained by varying 2 parameters freely and fixing the third one to SM value
- Construct a Likelihood function assuming Gaussian errors (reflected in nuisance parameters).
- Determine aTGCs by minimizing –log L with respect to all parameters.
- Calculate 95% confidence intervals on the measured aTGCs

CMS Limits on anomalous Triple Gauge Couplings

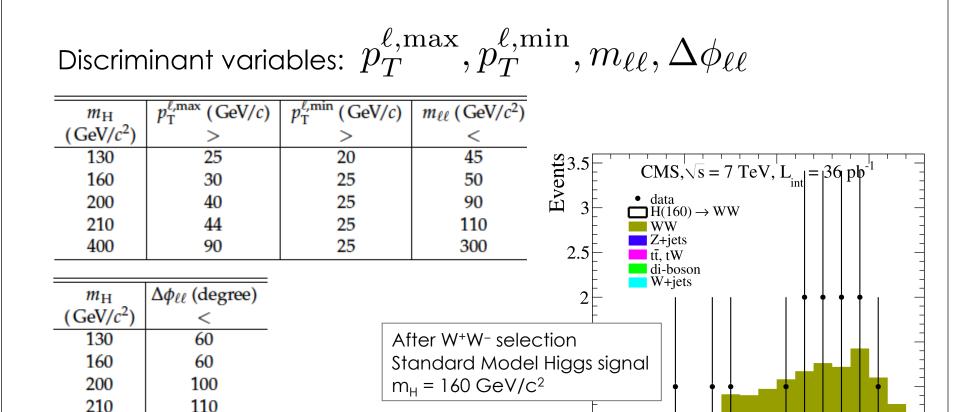
Search for Higgs boson in the W⁺W⁻ decay mode

Strategy for Higgs Search

- After full W⁺W⁻ selection is applied
- Discriminate against the remaining background, specially diboson W⁺W⁻ continuum
- One of the discriminators is the opening angle between leptons $\Delta \varphi_{\parallel}$
- The final step is a Higgs mass dependent event selection (two approaches)
 - cut-based approach
 - multivariate analysis

Diboson W+W- continuum discrimination

Standard Model Higgs has spin zero


Angular momentum conservation: Ws must be anti-correlated

W⁻ decays to a left-handed charged lepton and a right-handed neutrino l⁻ tends to point away from the W⁻ spin

Opening angle $\Delta\phi_{\ell\ell}$ between leptons from Higgs to WW is on average smaller than in continuum WW production

Cut based approach to enhance sensitivity to Higgs signal

0.5

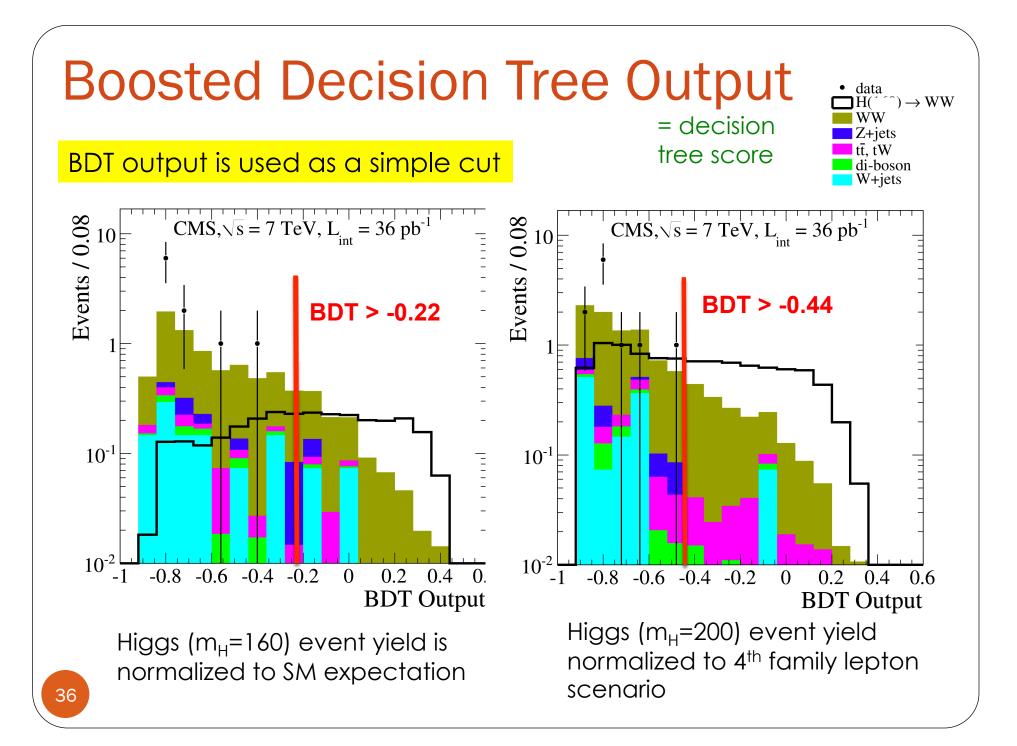
 $\mathbf{0}$

50

150

 $\Delta \phi_{\parallel}$ [degrees]

100


400

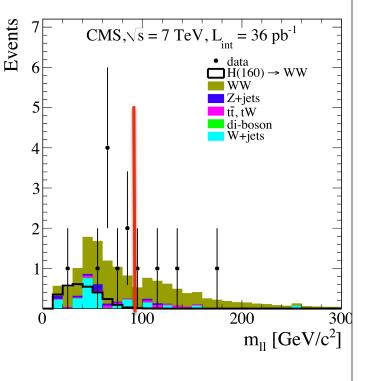
175

Multivariate approach to enhance sensitivity to Higgs signal

- Boosted Decision Tree (BDT) technique for each m_H hypothesis
- Sophisticated multiple cut technique
- Salvage signal which would be lost and Remove background that would pass
- Designed to maximize the signal and background separation

$$p_T^{\ell,\max}, p_T^{\ell,\min}, m_{\ell\ell}, \Delta\phi_{\ell\ell}$$

projected MET, $\Delta R_{\ell\ell}$, dilepton type $\Delta\phi(\ell, \text{MET}), M_T^{\ell_1,\text{MET}}, M_T^{\ell_2,\text{MET}}$



W⁺W⁻ background estimate

 $qq \rightarrow W^+W^-$ Data driven method

- Apply the WW selection
- Obtain a signal-free region, dominated by WW:
 - m_H<200 GeV/c² m_H>100GeV/c²
 - m_H>200 GeV/c² m_{II}<100GeV/c²
- Measure WW background in control region
- Extrapolate WW background in the signal region (depending on the Higgs mass hypothesis) using simulation

 $gg \rightarrow W^+W^-$ From MC

Higgs to W⁺W⁻ Yields

1 event surviving low-mass H selections (or MVA cut)

		/								
m_H (GeV/ c^2)	data	${{\rm SM} \atop {\rm H} ightarrow {\rm W}^+ {\rm W}^-}$	SM with 4th gen. $H \rightarrow W^+W^-$	all bkg.	$qq {\rightarrow} W^+ W^-$	$gg { ightarrow} W^+W^-$	all non- W ⁺ W ⁻			
	cut-based approach									
130	$\begin{pmatrix} 1 \end{pmatrix}$	0.30 ± 0.01	1.73 ± 0.04	1.67 ± 0.10	1.12 ± 0.01	0.10 ± 0.01	0.45 ± 0.10			
160	0	1.23 ± 0.02	10.35 ± 0.16	0.91 ± 0.05	0.63 ± 0.01	0.07 ± 0.01	0.21 ± 0.05			
200	0	0.47 ± 0.01	3.94 ± 0.07	1.47 ± 0.09	1.13 ± 0.01	0.12 ± 0.01	0.23 ± 0.09			
210	0	0.34 ± 0.01	2.81 ± 0.07	1.49 ± 0.05	1.09 ± 0.01	0.10 ± 0.01	0.30 ± 0.05			
400	0	0.19 ± 0.01	0.84 ± 0.01	1.06 ± 0.03	0.79 ± 0.01	0.04 ± 0.01	0.23 ± 0.03			
multivariate approach										
130	(1)	0.34 ± 0.01	1.98 ± 0.04	1.32 ± 0.18	0.75 ± 0.01	0.04 ± 0.00	0.53 ± 0.18			
160	0	1.47 ± 0.02	12.31 ± 0.17	0.92 ± 0.10	0.63 ± 0.01	0.06 ± 0.00	0.22 ± 0.10			
200	0	0.57 ± 0.01	4.76 ± 0.07	1.47 ± 0.07	1.07 ± 0.01	0.13 ± 0.00	0.27 ± 0.07			
210	0	0.42 ± 0.01	3.47 ± 0.07	1.44 ± 0.07	1.03 ± 0.01	0.12 ± 0.00	0.29 ± 0.07			
400	0	0.20 ± 0.01	0.90 ± 0.01	1.09 ± 0.07	0.75 ± 0.01	0.04 ± 0.00	0.30 ± 0.07			

statistical uncertainties from the simulations

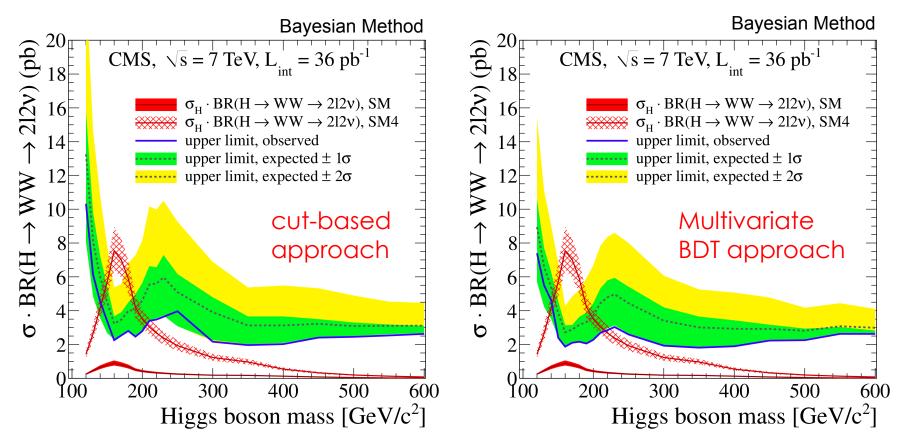
Background from fake leptons, Top, Drell-Yan and WZ/ZZ/W γ are measured with same techniques as shown in previous slides (WW production cross section)

BDT give better discriminating power

Dominant Uncertainties

The uncertainty on the H \rightarrow W⁺W⁻ signal yield is ~14% (After Higgs boson p_T distribution reweighted in POWHEG to match NNLO+NNLL prediction)

The uncertainties on the background estimations in the $H\rightarrow W^+W^-$ signal regions are ~40%, dominated by statistical uncertainties in the data control regions


- Luminosity 11%
- Jet veto efficiency uncertainty: 6.9%
- PDF uncertainty on signal efficiency: 3%
- μ_R and μ_F scales effect on acceptance: 2%

Interpretation of Results

- No excess compatible with Higgs signal production is observed in the current data sample
- We compute 95% Confidence Level Upper Limits on: $\sigma_{\rm H}$ ·BR(H \rightarrow WW \rightarrow 2l2v)
- Two statistical methods*: Bayesian & CLs hybrid Frequentist Bayesian approaches: first is shown (identical results)
- Limits in the 4th generation of (heavy) leptons

* PHYSTAT-LHC workshop LHC Statistics for Pedestrians http://cdsweb.cern.ch/record/1099994/

CMS Exclusion Limits

The observed limits have no sensitivity to the SM Higgs boson

But in the context of SM with a four fermion generation, CMS excludes a Higgs boson with m_{H} =[144-207]GeV/c² at 95% CL (Tevatron excludes m_{H} = [131-204] GeV/c² with ~10fb⁻¹)

Conclusion

First measurement of pp \rightarrow W+W- production cross section at 7 TeV

Derived limits on the anomalous triple gauge couplings (comparable in sensitivity to Tevatron)

First search of $H \rightarrow W+W-$ is done in 35 pb⁻¹

No excess above backgrounds observed in data

In context of SM with a four fermion generation, CMS excludes a Higgs boson with $m_{\rm H}$ =[144-207]GeV/c² at 95% CL

• Tevatron limits are $m_H = [131-204] \text{ GeV/C}^2$ (see http://arxiv.org/abs/ 1012.1483v1)

Starting to be competitive with the world limits

Stay tuned on $H \rightarrow WW$ in 2011!

Backup Slides

- Single lepton triggers
- Muon selection
 - * Found by Global and Tracker Muon algorithms
 - ∗ N_{muon hits} ≥1 and N_{matches to muon segments} ≥2
 - * N_{hits}(strips)>10 and N_{hits}(Pixels)≥1
 - * $p_T > 20 \text{ GeV/c and } |\eta| < 2.4$
 - * Combined Relative Isolation < 15%
 - * Impact parameter: $|d_0(PV)| < 0.02$ cm and $|d_z(PV)| < 1$ cm

 $\text{RelIso} = \frac{\sum_{\Delta R < 0.3}^{\text{tracks}} p_T + \sum_{\Delta R < 0}^{\text{ECAL}}$

- * Global fit χ^2 /ndof < 10
- * Relative p_T resolution is better than 10%
- Electron selection
 - * p_T >20 GeV/c and $|\eta|$ <2.5
 - * EleID based on shower shape and track cluster matching
 - * Combined Relative isolation < 10%
 - * Impact parameter: $|d_0(PV)| < 0.02$ cm and $|d_z(PV)| < 1$ cm
 - * Photon conversion veto

- * Z veto to further reject Drell-Yan: reject ee and $\mu\mu$ events which have dilepton mass within 15 GeV from Z mass.
- * Missing $E_T > 20 GeV$

To reject background events where there is no natural source of missing energy, like in Drell-Yan and QCD

* <u>Projected</u> Missing E_T To reject $Z \to \ell \ell$ events with a small opening angle between MET and one of the leptons

* Jet veto for Top contamination rejection

Veto events with jets $|\eta| < 5$ and $p_T > 25 \text{GeV/c}$ Jets are reconstructed using particle flow algorithm. The anti-kT clustering algorithm with R = 0.5 is used. Jets are required to be separated from the selected leptons by at least $\Delta R > 0.3$

* Extra lepton veto for diboson processes rejection

Events with a third lepton passing ID and isolation are rejected

* Top tagging veto for further Top contamination rejection

- soft-muon tagging
 - p_T>3GeV/c
 - Tracker muon
 - Pass TMLastStationAndTight muon ID requirements
 - Number of valid inner tracker hits > 10
 - Impact parameter $|d_0(PV)| < 0.02cm$
 - Muon with p₁>20GeV/c have to be non-isolated with Combined Relative Isolation > 10%
- b-jet tagging: any jet that pass the Track Counting High Efficiency tagger with a discriminator > 2.1