

# Constructing black holes and black hole microstates

String theory and the fuzzball proposal

Clément Ruef, AEI

LAPTH, Annecy-Le-Vieux, March 8th 2011



Work done with I. Bena, N. Bobev, S. Giusto, N. Warner, G. Dall'Agata. Work in Progress with G. Bossard

### Many different groups



- The fuzzball proposal for black holes: An elementary review, Mathur, hep-th/0502050,
- Black holes, black rings and their microstates, Bena and Warner, hep-th/0701216,
- The fuzzball proposal for black holes, Skenderis and Taylor, 0804.0552,
- Black Holes as Effective Geometries, Balasubramanian, de Boer, El-Showk and Messamah, 0811.0263.



### Motivation

### **Motivation: Quantum gravity**

But the developed tools are quite general:

- Generation of gravity solutions
- Application to other string theoretical systems :
   Flux compactifications and Klebanov-Strassler type systems
- Possible applications to cosmology

- Introduction : black hole issues and entropy counting
- 2 The fuzzball proposal
- 3 Constructing three-charge supersymmetric solutions
- Non-BPS extremal black holes
- 5 Conclusion and perspectives

- Introduction : black hole issues and entropy counting
- 2 The fuzzball proposal
- 3 Constructing three-charge supersymmetric solutions
- 4 Non-BPS extremal black holes
- 5 Conclusion and perspectives

### Black hole issues

#### Fundamental black hole problems:

- Central singularity
- Microscopic understanding of the BH entropy
- Information paradox



Cannot be answered in the context of general relativity.

### Black hole issues

#### Fundamental black hole problems:

- Central singularity
- Microscopic understanding of the BH entropy
- Information paradox



Cannot be answered in the context of general relativity.

# What is a black hole?



# Black-hole entropy

Classically, a black hole has a macroscopic entropy :

$$S = \frac{A}{4G_N}$$

Uniqueness theorem  $\longrightarrow$  only one single state!

# Black-hole entropy

Classically, a black hole has a macroscopic entropy :

$$S = \frac{A}{4G_N}$$

Uniqueness theorem  $\longrightarrow$  only one single state!

Statistically :  $e^{S}$  states.

$$\mathsf{Ex}: \mathit{M} = \mathit{M}_{\mathrm{center\ galaxy}} \longrightarrow \mathit{N} = \mathrm{e}^{10^{90}}$$



# **Huge discrepancy!**

# Questions

- Where are the BH microstates?
- What are the BH microstates?
- How do the BH microstates behave?
- What is the correct framework to understand the BH microstates?



# Questions

- Where are the BH microstates?
- What are the BH microstates?
- How do the BH microstates behave?
- What is the correct framework to understand the BH microstates?



We need a theory of quantum gravity!



# Strominger-Vafa counting

#### String theory provides partial answers:



# Strominger-Vafa counting

String theory provides partial answers:



# Remaining questions



- How do the "microstates" transform while turning on g<sub>s</sub>?
- What about the singularity resolution and the information paradox?

- Introduction : black hole issues and entropy counting
- 2 The fuzzball proposal
- Constructing three-charge supersymmetric solutions
- 4 Non-BPS extremal black holes
- **5** Conclusion and perspectives

# Thermodynamics

#### Two descriptions

A macroscopic one, continuous, in terms of thermodynamics and fluid mechanics. Pertinent for long scale effects.

The microscopic one, quantized, in terms of statistical/quantum mechanics. Pertinent for small scale effects.

Macroscopic state = statistical average of microscopic states



# Black hole thermodynamics

### Two descriptions?

A macroscopic one, continuous, in terms of BH thermodynamics. Pertinent for long scale effects, like gravitational scattering, gravitational lensing...



### General features

- Macroscopic state = statistical average of microscopic states
- ullet Same long range behaviour as the BH  $\longrightarrow$  same mass and charges
- Have to grow with  $g_s$ , as the BH. Non trivial statement!
- Horizon = Entropy → no horizon

Modification at the horizon scale!

# Key idea



QG effects :  $I \sim I_P$ 

QG effects :  $I \sim N^{\alpha}I_{P} \sim r_{S}$ 

$$I_P = \sqrt{rac{\hbar G}{c^3}} \sim 10^{-35} m$$

Fuzzball proposal: Quantum gravity effects extend until the horizon size Mathur

# The fuzzball proposal





# BH microstates = a horizonless configuration with the same asymptotics as the BH

- Very fuzzy? Fully stringy or only geometric?
- Can the geometric solutions sample the space of microstates?

### Back to black hole issues

### The fuzzball proposal could solve all the BH issues

- Central singularity resolved
- Microscopic understanding of the BH entropy

## Back to black hole issues

#### The fuzzball proposal could solve all the BH issues

- Central singularity resolved
- Microscopic understanding of the BH entropy
- Hypothesis leading to the information paradox do not hold anymore





Introduction: black hole issues and entropy counting The fuzzball proposal Constructing three-charge supersymmetric solutions Non-BPS extremal black holes Conclusion and perspectives

# Two charge story

### A very large body of work for two-charge black holes

• Microscopic, CFT, counting  $S = 4\pi\sqrt{N_1N_2}$  Sen

- Microscopic, CFT, counting  $S = 4\pi\sqrt{N_1N_2}$  Sen
- In supergravity, S = 0. Beyond SUGRA  $S = 4\pi\sqrt{N_1 N_2}$  Dabholkar

- Microscopic, CFT, counting  $S = 4\pi\sqrt{N_1N_2}$  Sen
- In supergravity, S=0. Beyond SUGRA  $S=4\pi\sqrt{N_1N_2}$  Dabholkar
- Constructing 2-charge fuzzballs from supertubes
   Lunin, Mathur;...

- Microscopic, CFT, counting  $S = 4\pi\sqrt{N_1N_2}$  Sen
- In supergravity, S = 0. Beyond SUGRA  $S = 4\pi\sqrt{N_1 N_2}$  Dabholkar
- Constructing 2-charge fuzzballs from supertubes
   Lunin, Mathur;...
- Counting the entropy from fuzzballs  $S=4\pi\sqrt{N_1\,N_2}$  Marolf, Palmer; Bak, Hyakutake, Ohta; Rychkov; Skenderis, Taylor;...

- Microscopic, CFT, counting  $S = 4\pi\sqrt{N_1N_2}$  Sen
- In supergravity, S = 0. Beyond SUGRA  $S = 4\pi\sqrt{N_1 N_2}$  Dabholkar
- Constructing 2-charge fuzzballs from supertubes
   Lunin, Mathur;...
- Counting the entropy from fuzzballs  $S=4\pi\sqrt{N_1\,N_2}$  Marolf, Palmer; Bak, Hyakutake, Ohta; Rychkov; Skenderis, Taylor;...





- Introduction : black hole issues and entropy counting
- 2 The fuzzball proposal
- 3 Constructing three-charge supersymmetric solutions
- 4 Non-BPS extremal black holes
- **5** Conclusion and perspectives

## Framework

- String theory: theory of quantum gravity (10D)
- Low energy limit : supergravity (10D or 11D)

### Framework

- String theory: theory of quantum gravity (10D)
- Low energy limit : supergravity (10D or 11D)
- We will physically describe 4D or 5D black holes. Other dimensions compactified
- Keep in mind stringy nature of the objects and interactions

I will switch between 11D/IIA/4D/5D supergravities.

# 11D Supergravity

#### The supergravity action:

$$2\kappa_{11}^2 S = \int d^{11}x \sqrt{-G} \left( R - \frac{1}{2} |F^{(4)}|^2 \right) - \frac{1}{6} \int A^{(3)} \wedge F^{(4)} \wedge F^{(4)}.$$

#### Field content:

- $g_{\mu\nu} \leftrightarrow \text{spacetime}$
- $A^{(3)} \leftrightarrow M2$  and M5 branes

In 4D/5D, gravity coupled to Maxwell and scalar fields.

From a 11D point of view, the charges come from M branes wrapping cycles along the compact  $\mathcal{T}^6$ :

$$\mathcal{M}_{11D} = \mathbb{R}^{4,1} \times T^6 = \mathbb{R}^{4,1} \times T^2 \times T^2 \times T^2$$

From a 11D point of view, the charges come from M branes wrapping cycles along the compact  $T^6$ :

$$\mathcal{M}_{11\mathrm{D}} = \mathbb{R}^{4,1} imes \mathcal{T}^6 = \mathbb{R}^{4,1} imes \mathcal{T}^2 imes \mathcal{T}^2 imes \mathcal{T}^2$$

From a 11D point of view, the charges come from M branes wrapping cycles along the compact  $T^6$ :

$$\mathcal{M}_{11\mathrm{D}} = \mathbb{R}^{4,1} imes T^6 = \mathbb{R}^{4,1} imes T^2 imes T^2 imes T^2$$

From a 11D point of view, the charges come from M branes wrapping cycles along the compact  $T^6$ :

$$\mathcal{M}_{11\mathrm{D}} = \mathbb{R}^{4,1} imes \mathcal{T}^6 = \mathbb{R}^{4,1} imes \mathcal{T}^2 imes \mathcal{T}^2 imes \mathcal{T}^2$$

### M Branes

From a 11D point of view, the charges come from M branes wrapping cycles along the compact  $\mathcal{T}^6$ :

$$\mathcal{M}_{11\mathrm{D}} = \mathbb{R}^{4,1} \times \mathcal{T}^6 = \mathbb{R}^{4,1} \times \mathcal{T}^2 \times \mathcal{T}^2 \times \mathcal{T}^2$$

M2 branes  $\leftrightarrow$  electric charges M5 branes  $\leftrightarrow$  magnetic charges

### M Branes

From a 11D point of view, the charges come from M branes wrapping cycles along the compact  $T^6$ :

$$\mathcal{M}_{\mathrm{11D}} = \mathbb{R}^{4,1} \times \mathit{T}^{6} = \mathbb{R}^{4,1} \times \mathit{T}^{2} \times \mathit{T}^{2} \times \mathit{T}^{2}$$

M2 branes  $\leftrightarrow$  electric charges M5 branes  $\leftrightarrow$  magnetic charges

### M Branes

From a 11D point of view, the charges come from M branes wrapping cycles along the compact  $T^6$ :

$$\mathcal{M}_{\mathrm{11D}} = \mathbb{R}^{4,1} \times \mathcal{T}^6 = \mathbb{R}^{4,1} \times \mathcal{T}^2 \times \mathcal{T}^2 \times \mathcal{T}^2$$

M2 branes  $\leftrightarrow$  electric charges M5 branes  $\leftrightarrow$  magnetic charges

### Metric Ansatz

We want to describe five-dimensional solutions :

$$ds^2 = -Z^{-2}(dt+k)^2 + Z ds_4^2 + \sum_{I=1}^3 X_I(dy_{I1}^2 + dy_{I2}^2),$$

$$A^{(3)} = \sum_{l=1}^{3} \left( -Z_{l}^{-1}(dt+k) + B^{(l)} \right) \wedge dy_{l1} \wedge dy_{l2}$$

with 
$$Z = (Z_1 Z_2 Z_3)^{1/3}$$
 and  $X_I = Z/Z_I$ .

This can describe either black holes, black rings or regular, BPS or non-BPS, solutions.

### Fields and content

- ds<sub>2</sub><sup>4</sup> base space
- $B^{(I)}$  magnetic charges
- Z<sub>I</sub> electric charges
- k angular momentum











### Metric Ansatz

We want to describe five-dimensional solutions :

$$ds^2 = -Z^{-2}(dt+k)^2 + Z ds_4^2 + \sum_{I=1}^3 X_I(dy_{I1}^2 + dy_{I2}^2),$$

$$A^{(3)} = \sum_{l=1}^{3} \left( -Z_{l}^{-1}(dt+k) + B^{(l)} \right) \wedge dy_{l1} \wedge dy_{l2}$$

with 
$$Z = (Z_1 Z_2 Z_3)^{1/3}$$
 and  $X_I = Z/Z_I$ .

This will describe either *black holes, black rings or regular, BPS or non-BPS*, solutions.

"Floating brane" Ansatz



# Floating brane Ansatz



No global force, the branes are **mutually BPS**. If SUSY, ansatz imposed

Introduction: black hole issues and entropy counting
The fuzzball proposal
Constructing three-charge supersymmetric solutions
Non-BPS extremal black holes
Conclusion and perspectives

# **BPS** equations



Supersymmetry reduces Einstein equations to a **first order system**.

Introduction: black hole issues and entropy counting
The fuzzball proposal
Constructing three-charge supersymmetric solutions
Non-BPS extremal black holes
Conclusion and perspectives

# **BPS** equations



Supersymmetry reduces Einstein equations to a **first order system**.

A four step procedure :



Supersymmetry reduces Einstein equations to a **first order system**.

A four step procedure :

Hyperkähler Euclidean 4D base space





Supersymmetry reduces Einstein equations to a **first order system**.

A four step procedure :

Hyperkähler Euclidean 4D base space



$$\Theta^{(I)} = *_4 \Theta^{(I)}$$
, where  $\Theta^{(I)} = dB^{(I)} \rightarrow \Theta^{(I)}$ 





Supersymmetry reduces Einstein equations to a first order system.

A four step procedure:





$$\Theta^{(I)} = *_4 \Theta^{(I)}$$
, where  $\Theta^{(I)} = dB^{(I)} \rightarrow \Theta^{(I)}$ 







Supersymmetry reduces Einstein equations to a first order system.

### A four step procedure:





$$\Theta^{(I)} = *_4 \Theta^{(I)}$$
, where  $\Theta^{(I)} = dB^{(I)} \rightarrow \Theta^{(I)}$ 









Supersymmetry reduces Einstein equations to a first order system.

### A four step procedure:





$$\Theta^{(I)} = *_4 \Theta^{(I)}$$
, where  $\Theta^{(I)} = dB^{(I)} \rightarrow \Theta^{(I)}$ 





Linear system of equations! Bena, Warner

# Gibbons-Hawking metrics

Assuming a triholomorphic U(1) isometry, an hyperkähler space is Gibbons-Hawking :

$$ds_4^2 = V^{-1}(d\psi + A)^2 + Vds_3^2$$
  
V harmonic,  $dV = *_3 dA$ .

Ex : 
$$V = \frac{1}{r}$$
, flat  $\mathbb{R}^4$ 

# Gibbons-Hawking metrics

Assuming a triholomorphic U(1) isometry, an hyperkähler space is Gibbons-Hawking :

$$ds_4^2 = V^{-1}(d\psi + A)^2 + Vds_3^2$$
  
V harmonic,  $dV = *_3 dA$ .

 $\mathsf{Ex}:V=1+rac{1}{r}$  ,  $\mathsf{Taub} ext{-NUT}$  space, interpolates between  $\mathbb{R}^4$  and  $\mathbb{R}^3 imes S^1$ 



# Gibbons-Hawking metrics

Assuming a triholomorphic U(1) isometry, an hyperkähler space is Gibbons-Hawking :

$$ds_4^2 = V^{-1}(d\psi + A)^2 + Vds_3^2$$
  
V harmonic,  $dV = *_3 dA$ .

Ex : 
$$V=1+\sum_i rac{q_i}{|ec{r}-ec{r}_i|}$$
 , Multi Taub-NUT space



### **BPS Solutions**

Assuming this Ansatz, all BPS solutions have been found. They are given by 8 harmonic functions: Gauntlett, Gutowski, Hull,

Pakis, Reall









### **BPS Solutions**

### Assuming this Ansatz, all BPS solutions have been found.

- black holes  $S=2\pi\sqrt{Q_1Q_2Q_3}$
- ullet black rings, horizon  $S^2 imes S^1$
- multicentered black holes
- smooth, regular solutions

### **BPS Solutions**

### Assuming this Ansatz, all BPS solutions have been found.

- black holes  $S=2\pi\sqrt{Q_1Q_2Q_3}$
- ullet black rings, horizon  $S^2 imes S^1$
- multicentered black holes
- smooth, regular solutions

### Smooth solutions

#### How to build smooth solutions?

Start from a multi-centered Taub-NUT space

$$ds_4^2 = V^{-1}(d\psi + A)^2 + Vds_3^2$$
$$V = 1 + \sum_{i} \frac{q_i}{|\vec{r} - \vec{r_i}|}$$



The  $S^1$  fiber shrinks at the each GH point  $\longrightarrow$  bubbles

### Smooth solutions



- Bubbles stabilized by magnetic fluxes
- No localized sources, no singularity
- bf Integrability, or bubble equation Denef; Bena, Warner:

$$\sum_{i} \frac{<\Gamma_{i}, \Gamma_{j}>}{r_{ij}} = <\Gamma_{i}, h>$$

Fluxes create the charges seen at infinity



# Smooth solutions and ambipolar spaces



Need to start from an 4D ambipolar base. Signature switches from (+,+,+,+) to (-,-,-,-)  $\longrightarrow$  seems to be highly singular!

### Smooth solutions and ambipolar spaces



Need to start from an 4D ambipolar base. Signature switches from (+,+,+,+) to (-,-,-)  $\longrightarrow$  seems to be highly singular!

Complete 11D (5D) solutions completely regular Giusto, Mathur,

Saxena



# Giving up the U(1) isometry

One can count the entropy coming from the microstates  $\longrightarrow$  **not enough** 

It was expected:

U(1)-isometry: cuts all the modes along the fiber!

Two-charge case: entropy comes from these modes

# Giving up the U(1) isometry

Look at a wiggling supertube dual to a smooth GH center Problem : we need the Green function on an ambipolar GH space

- known for (+,+,...,+) centers Page
- can be found for ambipolar two centers (+, -) from  $AdS_3 \times S^2$
- Very hard problem in general



New solutions with a function  $f(\theta)$  as parameter  $\longrightarrow$  Infinite dimensional moduli space Bena, Bobev, Giusto, CR, Warner

# Entropy enhancement mechanism



Entropy of the supertube in flat space

$$S \sim \sqrt{Q_1 Q_2}$$

• Entropy of the supertube in dipole-charged background

$$S \sim \sqrt{Q_{1\mathrm{eff}}\,Q_{2\mathrm{eff}}}$$



# Entropy enhancement mechanism



Entropy of the supertube in flat space

$$S \sim \sqrt{Q_1 Q_2}$$

Entropy of the supertube in dipole-charged background

$$S \sim \sqrt{Q_{1\mathrm{eff}}\,Q_{2\mathrm{eff}}}$$

## Much more entropy than naively expected!

Bena, Bobev, CR, Warner



# Other approaches to the fuzzball proposal

One can make use of the AdS/CFT correspondence in the context of the fuzzball proposal

- Identification of the microstates on the CFT side Skenderis, Taylor
- Computation of perturbative corrections of fuzzballs to the flat metric from a pure worldsheet point of view Giusto, Morales, Russo
- Precision counting on both sides of the correspondence, using indices and partition functions Sen

Gravity Gauge macroscopic microscopic

All approaches, despite being very different, seem to confirm the conjecture.



- 1 Introduction: black hole issues and entropy counting
- The fuzzball proposal
- Constructing three-charge supersymmetric solutions
- 4 Non-BPS extremal black holes
- **(5)** Conclusion and perspectives

### Non-BPS black holes

### What can we do without supersymmetry?

Recent years : a lot of progress for extremal non-BPS black holes, through different approaches

- Fake superpotential and first order formalism Ceresole, Dall'Agata et al;
   Andrianopoli, D'Auria, Trigiante et al; Gimon, Larsen, Simon; Perz, Galli, Jansen, Smyth, Van Riet,
  - Vercnocke:...
- Almost BPS equations Goldstein, Katmadas; Bena, Giusto, CR, Warner
- Integrability conditions Andrianopoli, D'Auria, Orazi, Trigiante et al.
- Reduction to three dimensions Clement, Galt'sov, Scherbluk et al; Bossard et al;

```
Virmani et al; Chemissany, Rosseel, Trigiante, Van Riet et al; ...
```

### Non-BPS black holes

### What can we do without supersymmetry?

Recent years : a lot of progress for extremal non-BPS black holes, through different approaches

- Fake superpotential and first order formalism Ceresole, Dall'Agata et al;
  - Andrianopoli, D'Auria, Trigiante et al; Gimon, Larsen, Simon; Perz, Galli, Jansen, Smyth, Van Riet, Vercnocke:...
- Almost BPS equations Goldstein, Katmadas; Bena, Giusto, CR, Warner
- Integrability conditions Andrianopoli, D'Auria, Orazi, Trigiante et al
- Reduction to three dimensions Clement, Galt'sov, Scherbluk et al; Bossard et al;

Virmani et al; Chemissany, Rosseel, Trigiante, Van Riet et al; ...

# **Supersymmetry** → extremality



### Almost BPS solutions

# Fondamental idea : SUSY broken by the relative orientation of the branes

Solve almost the same system of equations

BPS system

$$dV = *_{3}dA$$

$$\Theta^{(I)} = *_{4}\Theta^{(I)}$$

$$\nabla^{2}Z_{I} = \frac{C_{IJK}}{2} *_{4} \left[\Theta^{(J)} \wedge \Theta^{(K)}\right]$$

$$dk + *_{4}dk = Z_{I}\Theta^{(I)}$$

Ex: BPS 4-charge black hole D6-D2-D2-D2

### Almost BPS solutions

# Fondamental idea : SUSY broken by the relative orientation of the branes

Solve almost the same system of equations

non-BPS system Goldstein, Katmadas

$$dV = -*_{3} dA$$

$$\Theta^{(I)} = *_{4}\Theta^{(I)}$$

$$\nabla^{2}Z_{I} = \frac{C_{IJK}}{2} *_{4} \left[\Theta^{(J)} \wedge \Theta^{(K)}\right]$$

$$dk + *_{4}dk = Z_{I}\Theta^{(I)}$$

Ex : non-BPS 4-charge black hole  $\overline{D6}$ -D2-D2-D2

### Almost BPS solutions

#### Tools developed in the SUSY context can be used

Large class of new solutions: Bena, Dall'Agata, Giusto, CR, Warner

- Black holes
- Black rings
- Multicentered black holes
- No microstates

One recovers all solutions found with the fake superpotential approach, by solving linear systems.

Further generalization of the system of equations, and the solutions.



# Floating brane vs extremality

First assumption : Floating brane ansatz  $\sim$  extremality

## Floating brane vs extremality

#### First assumption : Floating brane ansatz $\sim$ extremality

Dualities: map solutions to solutions.
 BPS case: solution space is closed, all in (the closure of) the floating brane ansatz

**Almost BPS case**: solution space not closed. New solutions obtained by duality, not floating brane

Ex: New non-BPS doubly spinning black ring in Taub-NUT with dipole charges Dall'Agata, Giusto, CR; Bena, Giusto, CR

# Floating brane vs extremality

#### First assumption : Floating brane ansatz $\sim$ extremality

- Dualities: map solutions to solutions.
   BPS case: solution space is closed, all in (the closure of) the floating brane ansatz
  - **Almost BPS case**: solution space not closed. New solutions obtained by duality, not floating brane
  - Ex: New non-BPS doubly spinning black ring in Taub-NUT with dipole charges Dall'Agata, Giusto, CR; Bena, Giusto, CR
- Possible to obtain non-extremal microstates within the floating brane ansatz

# Floating brane Ansatz



# Linear systems

Key point : the equations are solved in a linear way.

$$dV = *_3 dA$$

$$\Theta^{(I)} = *_4 \Theta^{(I)}$$

$$\nabla^2 Z_I = \frac{C_{IJK}}{2} *_4 [\Theta^{(J)} \wedge \Theta^{(K)}]$$

$$dk + *_4 dk = Z_I \Theta^{(I)}$$

#### Linear systems

Key point : the equations are solved in a linear way.

$$dV = *_{3}dA$$

$$\Theta^{(I)} = *_{4}\Theta^{(I)}$$

$$\nabla^{2}Z_{I} = \frac{C_{IJK}}{2} *_{4} \left[\Theta^{(J)} \wedge \Theta^{(K)}\right]$$

$$dk + *_{4}dk = Z_{I}\Theta^{(I)}$$

#### This is a graded system.

Underlying structure behind. How can we make it explicit, and use it?

## Linear systems

Key point : the equations are solved in a linear way.

$$dV = *_{3}dA$$

$$\Theta^{(I)} = *_{4}\Theta^{(I)}$$

$$\nabla^{2}Z_{I} = \frac{C_{IJK}}{2} *_{4} [\Theta^{(J)} \wedge \Theta^{(K)}]$$

$$dk + *_{4}dk = Z_{I}\Theta^{(I)}$$

This is a graded system.

Underlying structure behind. How can we make it explicit, and use it?

Reduction to a three-dimensional problem



In 3D, electric-magnetic duality 

 — gravity coupled to scalars

 Breitenlohner, Gibbons, Maison

- In 3D, electric-magnetic duality 

   — gravity coupled to scalars

   Breitenlohner, Gibbons, Maison
- Moduli space is a coset  $\mathcal{M} = G/K$ . Ex : In our case  $\mathcal{M} = SO(4,4)/SL(2)^4$ .

- In 3D, electric-magnetic duality 

   — gravity coupled to scalars

   Breitenlohner, Gibbons, Maison
- Moduli space is a coset  $\mathcal{M} = G/K$ . Ex : In our case  $\mathcal{M} = SO(4,4)/SL(2)^4$ .
- Use the algebraic structure of the space
  - Dualizing Clement, Galt'sov et al; Jamsin, Virmani et al
  - Solving equations Bossard et al
  - Using the integrability properties of the theory Figueras et al

- In 3D, electric-magnetic duality → gravity coupled to scalars
   Breitenlohner, Gibbons, Maison
- Moduli space is a coset  $\mathcal{M} = G/K$ . Ex : In our case  $\mathcal{M} = SO(4,4)/SL(2)^4$ .
- Use the algebraic structure of the space
  - Dualizing Clement, Galt'sov et al; Jamsin, Virmani et al
  - Solving equations Bossard et al
  - Using the integrability properties of the theory Figueras et al

Extremal solutions  $\longleftrightarrow$  Nilpotent orbits in  $\mathcal M$  Graded system  $\longleftrightarrow$  Lie algebra graded decomposition



#### **Multicenter solutions**

Recover all BPS solutions

Bossard, Nicolai, Stelle



#### **Multicenter solutions**

Recover all BPS solutions

Bossard, Nicolai, Stelle

 Recover almost BPS solutions Perz, Galli; Bossard; Bossard,



#### Multicenter solutions

- Recover all BPS solutions
  - Bossard, Nicolai, Stelle
- Recover almost BPS solutions Perz, Galli; Bossard; Bossard,
- Find new solutions Bossard, CR



## Floating brane and non-BPS microstates

#### Wider generalisation of the system of equations :Bena, Giusto, CR,

Warner

$$R_{ab} = 0$$

$$\Theta^{(I)} = *_{4}\Theta^{(I)}$$

$$\nabla^{2}Z_{I} = \frac{C_{IJK}}{2} *_{4} \left[\Theta^{(J)} \wedge \Theta^{(K)}\right]$$

$$dk + *_{4}dk = Z_{I}\Theta^{(I)}$$

This system allows for microstates!



#### **Bolt solutions**

 $R_{ab} = 0 \rightarrow \text{Why not start with an Euclidean black hole?}$ 

#### **Bolt solutions**

#### $R_{ab} = 0 \rightarrow \text{Why not start with an Euclidean black hole?}$

Lorentzian  $\rightarrow$  Euclidean : event horizon becomes a bolt, a non-trivial  $S^2$ The space ends smoothly at  $r=r_+$ , and interpolates between  $\mathbb{R}^2 \times S^2$  and  $\mathbb{R}^3 \times S^1$ 



#### **Bolt solutions**

#### $R_{ab} = 0 \rightarrow \text{Why not start with an Euclidean black hole?}$

Lorentzian  $\rightarrow$  Euclidean : event horizon becomes a bolt, a non-trivial  $S^2$ The space ends smoothly at  $r=r_+$ , and interpolates between  $\mathbb{R}^2\times S^2$  and  $\mathbb{R}^3\times S^1$ 

#### No singularity



# Putting fluxes on the bolt

The bolt gives us an  $S^2$  to put magnetic fluxes. As in the BPS case, this fluxes create the charges seen from infinity. "Charges dissolved in fluxes"



# Putting fluxes on the bolt

The bolt gives us an  $S^2$  to put magnetic fluxes. As in the BPS case, this fluxes create the charges seen from infinity. "Charges dissolved in fluxes"

Regular solutions, no singularity, no horizon Bena,

Giusto, CR, Warner; Bobev, CR



Have the same asymptotics as a **non-extremal** black hole  $M = M_{sol} + \sum Q_l$ 

- Introduction : black hole issues and entropy counting
- 2 The fuzzball proposal
- Constructing three-charge supersymmetric solutions
- 4 Non-BPS extremal black holes
- 5 Conclusion and perspectives

#### Conclusion

- Black hole issues yet to be solved
- Fuzzball proposal :
  - physically intuitive motivated
  - rigorously defended, from various point of views
  - works in the two charge case
- Microstates built by putting magnetic fluxes on non-trivial two-cycles
- Entropy enhancement mechanism
- New non-BPS microstates



## Perspectives

- Need to find more general solutions
- Extremal non-BPS microstates from 3D approach
- How much entropy can be obtained by the entropy enhancement mechanism?
- Study of the (in-)stability of the non extremal microstates Mathur, Chowdhury
- Application to very early universe cosmology Mathur, Chowdhury



Introduction: black hole issues and entropy counting
The fuzzball proposal
Constructing three-charge supersymmetric solutions
Non-BPS extremal black holes
Conclusion and perspectives

# Thank you for your attention