

Theoretical Physics Seminar 7th April 2011

Selected Aspects of Flavour and Supersymmetry

Stéphanie Trine

I. Looking for New Physics... The flavour problem

II. Formulation within the MSSM

Adopt a soft-breaking universality ansatz and study the « left-over dangerousness ». Two scenarios:

III. Higgs-mediated FCNC for large $tan\beta$

IV. Imprints of large θ_v on (s)quark mixings in GUTs

I. Looking for New Physics... The flavour problem

The SM flavour sector is peculiar

All flavour breakings and CP violation are contained in the Yukawa matrices

$$\mathcal{L}_{Y} = \overline{d}_{R}^{I} \mathbf{Y}_{d}^{IJ} Q^{J} \cdot H^{c} - \overline{u}_{R}^{I} \mathbf{Y}_{u}^{IJ} Q^{J} \cdot H + \overline{e}_{R}^{I} \mathbf{Y}_{e}^{IJ} L^{J} \cdot H^{c} + h.c.$$
$$Q^{J} = \begin{pmatrix} u_{L}^{J} \\ d_{L}^{J} \end{pmatrix}, \quad L^{J} = \begin{pmatrix} v_{L}^{J} \\ e_{L}^{J} \end{pmatrix}, \quad H = \begin{pmatrix} h^{+} \\ h^{0} \end{pmatrix}, \quad H^{c} = \begin{pmatrix} h^{0*} \\ -h^{-} \end{pmatrix}$$

Flavour symmetry $U(3)^5$ of the gauge sector :

$$q^{I} \rightarrow \mathbf{V}_{q}^{IJ} q^{J}, \quad q = Q, u_{R}, d_{R}, L, e_{R}$$

The flavour basis can be chosen such that

$$\mathcal{L}_{Y} = \overline{d}_{R}^{I} \, \hat{\mathbf{Y}}_{d}^{I} \, Q^{I} \cdot H^{c} - \overline{u}_{R}^{I} \, \hat{\mathbf{Y}}_{u}^{I} \, \underbrace{\mathbf{V}_{CKM}^{IJ}}_{CKM} \, Q^{J} \cdot H + \overline{e}_{R}^{I} \, \hat{\mathbf{Y}}_{e}^{I} \, L^{I} \cdot H^{c} + h.c.$$

4 parameters

In Wolfenstein parametrisation :

only source of CP violation in the SM

$$\mathbf{V}_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho + i\eta)^* \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

+ Suppression of FCNC :

- Strong CKM hierarchy : $\lambda \equiv \sin \theta_C \simeq 0.23$

These two features do not survive in most SM extensions

The SM flavour success

A possible deviation?

(q=d,s)

- Dispersive part (*t*)
$$\rightarrow M_{12}^{B_q}$$

- Absorptive part (*c*, *u*) $\rightarrow \Gamma_{12}^{B_q}$

n

3 physical quantities:
$$\left|M_{12}^{B_q}\right| \simeq \frac{1}{2}\Delta M_q$$
, $\left|\Gamma_{12}^{B_q}\right|$, $\phi_q \equiv \arg\left(-M_{12}^{B_q}/\Gamma_{12}^{B_q}\right)$

 $\begin{aligned} \text{Like-sign dimuon charge asymmetry } a_{fs} &= \frac{N^{++} - N^{--}}{N^{++} + N^{--}} : \\ a_{fs}^{CDF+D0} &= (-8.5 \pm 2.8) \cdot 10^{-3} = (0.506 \pm 0.043) a_{fs}^{d} + (0.494 \pm 0.043) a_{fs}^{s} \qquad \text{[D0+CDF '10]} \\ a_{fs}^{SM} &= (-0.20 \pm 0.03) \cdot 10^{-3} \qquad \rightarrow 2.9\sigma \text{ discrepancy} \qquad \text{[Lenz,Nierste '06/'11]} \\ a_{fs}^{q} &= \sin \phi_{q} \left| \Gamma_{12}^{B_{q}} \right| / \left| M_{12}^{B_{q}} \right| \qquad \Rightarrow \text{New Physics phases in} B_{s} - \overline{B}_{s} \\ and B - \overline{B} \text{ mixings?} \end{aligned}$

A possible deviation?

(q=d,s)

- Dispersive part (*t*)
$$\rightarrow M_{12}^{B_q}$$

- Absorptive part (*c*, *u*) $\rightarrow \Gamma_{12}^{B_q}$

3 physical quantities:
$$\left|M_{12}^{B_q}\right| \simeq \frac{1}{2}\Delta M_q$$
, $\left|\Gamma_{12}^{B_q}\right|$, $\phi_q \equiv \arg\left(-M_{12}^{B_q}/\Gamma_{12}^{B_q}\right)$

Angular analysis of tagged $B_s \rightarrow J / \psi \phi$ decays:

CDF+D0
$$-2\beta_s^{\text{eff}} = (-0.83_{-0.36}^{+0.30}) \cup (-2.31_{-0.30}^{+0.36})$$
 [HFAG '10]

SM $-2\beta_s^{SM} \simeq -0.04 \longrightarrow 2.3\sigma$ discrepancy

$$-2\beta_{s}^{\text{eff}} = -2\beta_{s}^{\text{SM}} + \phi_{s}^{\text{NP}} \simeq \phi_{s}^{\text{SM}} + \phi_{s}^{\text{NP}} = \phi_{s}$$
Supports large ϕ_{s}

II. Formulation within the MSSM

Reminder

	Particles	Sparticles		
Spin 1	gauge bosons $G^a_\mu,\ W^i_\mu,\ B_\mu,$			
Spin 1/2	quarks and leptons (× 3 gen) $Q^{j} = (u_{L}^{j}, d_{L}^{j}), u_{R}^{j}, d_{R}^{j}$ $L = (v_{L}, e_{L}), e_{R}$	$\begin{array}{c} \begin{array}{c} gauginos & charginos \\ \tilde{G}^{a}, \overline{\tilde{W}^{i}}, \ \tilde{B} & SSB & \tilde{\chi}_{1,2}^{\pm} \\ \hline higgsinos & & neutralinos \\ \overline{\tilde{H}_{u}}, \ \tilde{H}_{d} & & \tilde{\chi}_{1,2,3,4}^{0} \end{array}$		
Spin 0	2 higgs doublets $H_u = (h_u^+, h_u^0)$ $H_d = (h_d^{0^*}, -h_d^-)$	squarks and sleptons (× 3 gen) $\tilde{Q}^{j} = (\tilde{u}_{L}^{j}, \tilde{d}_{L}^{j}), \ \tilde{u}_{R}^{j}, \ \tilde{d}_{R}^{j}$ $\tilde{L} = (\tilde{v}_{L}, \tilde{e}_{L}), \ \tilde{e}_{R}$		

The number of particles has to be doubled + 2 higgs-doublets instead of one

SUSY-conserving part :

- 1 new source of CP violation : $\arg \mu$
- New occurences of the Yukawa matrices

SUSY-breaking part :

Many new sources of flavour and CP violation!

$$\begin{aligned} \mathcal{L}_{SB} &\supset -\frac{1}{2} \Big(M_1 \tilde{B}\tilde{B} + M_2 \tilde{W}\tilde{W} + M_3 \tilde{G}\tilde{G} \Big) + h.c. \\ &- \tilde{Q}^{*I} (\tilde{\mathbf{m}}_Q^2)^{IJ} \tilde{Q}^J - \tilde{d}_R^{*I} (\tilde{\mathbf{m}}_d^2)^{IJ} \tilde{d}_R^J - \tilde{u}_R^{*I} (\tilde{\mathbf{m}}_u^2)^{IJ} \tilde{u}_R^J - \tilde{L}^{*I} (\tilde{\mathbf{m}}_L^2)^{IJ} \tilde{L}^J - \tilde{e}_R^{*I} (\tilde{\mathbf{m}}_e^2)^{IJ} \tilde{e}_R^J \\ &+ \tilde{d}_R^{*I} \mathbf{A}_d^{IJ} \tilde{Q}^J \cdot H_d - \tilde{u}_R^{*I} \mathbf{A}_u^{IJ} \tilde{Q}^J \cdot H_u + \tilde{e}_R^{*I} \mathbf{A}_e^{IJ} \tilde{L}^J \cdot H_d + h.c \end{aligned}$$

(R-parity assumed)

d-squark mass matrix in sCKM basis :

$$\frac{\left(\mathbf{M}_{\tilde{d}}^{2}\right)_{LL}}{\left(\mathbf{V}_{d_{L}}\tilde{\mathbf{M}}_{Q}^{2}\mathbf{V}_{d_{L}}^{\dagger}+\left(v_{d}\hat{\mathbf{Y}}_{d}^{\dagger}\right)\left(v_{d}\hat{\mathbf{Y}}_{d}\right)+xM_{z}^{2}\mathbf{1}\right)} \underbrace{\left(\mathbf{M}_{\tilde{d}}^{2}\right)_{LR}}_{\mathbf{V}_{d_{L}}(v_{d}\mathbf{A}_{d}^{\dagger})\mathbf{V}_{d_{R}}^{\dagger}-\mu\tan\beta\left(v_{d}\hat{\mathbf{Y}}_{d}^{\dagger}\right)}\right)}_{\mathbf{V}_{d_{R}}(v_{d}\mathbf{A}_{d})\mathbf{V}_{d_{L}}^{\dagger}-\mu^{*}\tan\beta\left(v_{d}\hat{\mathbf{Y}}_{d}\right)} \underbrace{\left(\mathbf{V}_{d_{R}}\tilde{\mathbf{M}}_{d}^{2}\mathbf{V}_{d_{R}}^{\dagger}+\left(v_{d}\hat{\mathbf{Y}}_{d}\right)\left(v_{d}\hat{\mathbf{Y}}_{d}^{\dagger}\right)+yM_{z}^{2}\mathbf{1}\right)}_{\left(\mathbf{M}_{\tilde{d}}^{2}\right)_{RR}}$$
Typical contribution to FCNC :
$$\overline{K}^{0}\left\{\begin{array}{c}s_{R} \\ \overline{g}\\ \overline{d}_{R} \\ \overline{d}_$$

FCNC still loop- and GIM-suppressed, but flavour-couplings a priori not suppressed anymore

d-squark mass matrix in sCKM basis :

$$\begin{pmatrix}
\mathbf{M}_{\tilde{d}}^{2} \\
\mathbf{L}_{LL} \\
\begin{pmatrix}
\mathbf{M}_{\tilde{d}}^{2} \\
\mathbf{L}_{LR} \\
\mathbf{V}_{d_{L}} \mathbf{\tilde{m}}_{Q}^{2} \mathbf{V}_{d_{L}}^{\dagger} + (v_{d} \mathbf{\tilde{Y}}_{d}^{\dagger})(v_{d} \mathbf{\tilde{Y}}_{d}) + xM_{Z}^{2} \mathbf{1} \\
\begin{pmatrix}
\mathbf{M}_{d}^{2} \\
\mathbf{V}_{d_{L}} (v_{d} \mathbf{A}_{d}^{\dagger}) \mathbf{V}_{d_{R}}^{\dagger} - \mu \tan \beta(v_{d} \mathbf{\tilde{Y}}_{d}) \\
\mathbf{V}_{d_{R}} (v_{d} \mathbf{A}_{d}^{\dagger}) \mathbf{V}_{d_{R}}^{\dagger} - \mu^{*} \tan \beta(v_{d} \mathbf{\tilde{Y}}_{d}) \\
\mathbf{V}_{d_{R}} \mathbf{\tilde{m}}_{d}^{2} \mathbf{V}_{d_{R}}^{\dagger} + (v_{d} \mathbf{\tilde{Y}}_{d})(v_{d} \mathbf{\tilde{Y}}_{d}^{\dagger}) + yM_{Z}^{2} \mathbf{1}
\end{pmatrix}$$
Typical contribution to FCNC :
$$\vec{K}^{0} \begin{cases}
s_{R} \rightarrow \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \quad \vec{\tilde{g}} \\
\vec{\tilde{g}} \quad \vec{$$

A posteriori : define mass insertions

$$\left(\delta_{IJ}^{d}\right)_{MN} \equiv \frac{1}{\tilde{m}^{2}} \left(\mathbf{M}_{\tilde{d}}^{2}\right)_{MN}^{IJ} \quad (M, N = L, R)$$

The MSSM flavour problem

					[Gabbiani et al. '96]
a	IJ	$\left(\delta^{q}_{IJ} \right)_{IL,RR}$	$\sqrt{\left(\delta^{q}_{IJ}\right)_{LL}\left(\delta^{q}_{IJ}\right)_{RR}}$	$\left(\delta^{q}_{IJ} \right)_{IR}$	[Masiero, Vempati, Vives '07]
9	10	$(U_{IJ})_{LL,RR}$	$\sqrt{\left(\mathcal{O}_{IJ}\right)_{LL} \left(\mathcal{O}_{IJ}\right)_{RR}}$	$(\mathcal{O}_{IJ})_{LR}$	[Ciuchini et al. '07]
7	12	0.02	0.002	2×10 ⁻⁴	[Artuso et al. '08]
a	12	0.03	0.002	2×10	[Isidori,Nir,Perez '10]
d	13	0.2	0.07	0.08	
					$\tilde{m} - 1T_{0}V$
d	23	0.6	0.2	0.01	$\tilde{m} = 1 TeV$
					$m_{\tilde{\varrho}}^2 / \tilde{m}^2 = 1$
U	12	0.1	0.008	0.02	g

If sparticle masses are \leq a few TeV, most of the MI must be tiny, that is,

- either the sfermions must be quasi degenerate
- or they must be quasi aligned with fermions

(or a combination of both mechanisms).

Problem : origin of this structure!

The soft-breaking terms are the footprints of the SUSY-breaking mechanism.

If the mediation of SUSY breaking to the MSSM is flavour blind (e.g., GMSB), the soft terms will obey universality conditions of the type

 $\tilde{\mathbf{m}}_Q^2, \tilde{\mathbf{m}}_d^2, \tilde{\mathbf{m}}_u^2, \tilde{\mathbf{m}}_L^2, \tilde{\mathbf{m}}_e^2 \propto \mathbf{1}, \quad \mathbf{A}_u \propto \mathbf{Y}_u, \quad \mathbf{A}_d \propto \mathbf{Y}_d, \quad \mathbf{A}_e \propto \mathbf{Y}_e$

This is usually considered as safe from the point of view of flavour violating effects.

In this talk : study « left-over dangerousness »

We take the soft-breaking universality ansatz as zeroth order approximation. Sizeable flavour violating effects could still be produced via the impact of large parameters. Two known examples: $\tan \beta$, neutrino mixing angles.

Can such effects account for large phases in $B_{s,d} - \overline{B}_{s,d}$ mixings?

Two scenarios

1. Higgs-mediated FCNC for large $tan\beta$

 $\tan \beta \equiv v_u / v_d \sim 40-50$ allows the unification of top and bottom Yukawa couplings

MSSM with large $\tan\beta$:

the large $tan\beta$ factor compensates for the loop suppression in Higgs-mediated FCNC

2. Imprints of large θ_{v} on (s)quark mixings in GUTs

$$\frac{m_{\tau}}{m_b} \stackrel{=}{=} \frac{y_{\tau}}{y_b} \stackrel{\sim}{\subseteq} 1 \longrightarrow \mathbf{Y}_d = \mathbf{Y}_e^T \quad \text{ex : minimal SU(5)}$$

The large neutrino mixing angles can induce significant quark-squark misalignments. Specific scenario : SUSY SO(10) model proposed by Chang, Masiero, Murayama

III. Higgs-mediated FCNC for large $tan\beta$

SUSY imposes a 2HDM-II structure for the Yukawa interactions:

$$\mathcal{L}_{Y}^{quarks} = \overline{u}_{R}^{I} \mathbf{Y}_{u}^{IJ} H_{u} \cdot Q^{J}$$
$$- \overline{d}_{R}^{I} \mathbf{Y}_{d}^{IJ} H_{d} \cdot Q^{J} + h.c$$

Main idea

Soft SUSY breaking \rightarrow 2HDM-III structure at loop level:

(sparticle masses ≫ Higgs masses)

$$\mathcal{L}_{Y}^{quarks} = \overline{u}_{R}^{I} \Big[\mathbf{Y}_{u} H_{u} + \delta \mathbf{Y}_{u} H_{d}^{c} \Big]^{IJ} \cdot Q^{J} \\ - \overline{d}_{R}^{I} \Big[\mathbf{Y}_{d} H_{d} + (\varepsilon_{0} \mathbf{Y}_{d} + \varepsilon_{Y} \mathbf{Y}_{d} \mathbf{Y}_{u}^{\dagger} \mathbf{Y}_{u}) H_{u}^{c} \Big]^{IJ} \cdot Q^{J} + h.c. \\ \overbrace{Q^{J} \qquad \widetilde{d}_{R}^{I} \qquad \widetilde{d}_{R}^{I}} \\ Q^{J} \qquad \widetilde{d}_{R}^{I} \qquad \widetilde{d}_{R}^{I} \qquad \widetilde{Q}^{K} \\ Q^{J} \qquad \widetilde{d}_{R}^{I} \qquad \widetilde{Q}^{K} \\ Q^{J} \qquad \widetilde{d}_{R}^{I} \qquad \widetilde{d}_{R}^{I} \\ \sim \mu^{*} / M_{3} \qquad \qquad \widetilde{A}_{u}^{*NK} / \mu \end{array}$$
 New flavour structure, not aligned with \mathbf{Y}_{d}

Dimension-4 effective operators \Rightarrow the corrections are non-decoupling

Main idea

Soft SUSY breaking \rightarrow 2HDM-III structure at loop level:

(sparticle masses ≫ Higgs masses)

The corrected *d*-quark mass matrix must be rediagonalized.

Doing so, the misalignment of quark mass terms and quark-Higgs vertices implies:

- O(1) corrections to H^+ vertices
- Higgs-mediated FCNC with coupling $\kappa^{IJ} \sim (m^{I}/v) \varepsilon_{Y} V_{tI}^{*} V_{tJ} (\tan \beta)^{2}$:

$$\kappa^{IJ} \overline{d}_R^I d_L^J \left[c_\beta h_u^{0*} - s_\beta h_d^{0*} \right] + \kappa^{II*} \overline{d}_L^I d_R^J \left[c_\beta h_u^0 - s_\beta h_d^0 \right]$$
$$(c_\beta \equiv \cos\beta, etc)$$

[Babu,Kolda '99]

Distinctive phenomenology

Higgs couplings still proportional to $m^{I} \Rightarrow$ look at *B* physics (note: also *K* physics)

Distinctive phenomenology

Higgs couplings still proportional to $m^{I} \Rightarrow$ look at *B* physics (note: also *K* physics)

- Clean: same dependence on F_{B_q} and V_{tq} in both observables [Buras et al. '02] - Superficially leading contribution $\Delta M_q^{(m_b^2)} = 0$, correlation obtained for $\Delta M_q^{(m_q m_b)}$

Look at <u>all</u> (sub-)leading contributions before concluding!

New contributions to $\phi_{s,d}$?

[Gorbahn,Jäger,Nierste,S.T. '09]

Why the cancellation?

[Babu,Kolda '99]

The amplitude is ruled by

•
$$V^{(0)} = m_1^2 H_d^{\dagger} H_d + m_2^2 H_u^{\dagger} H_u + B\mu \{H_u \cdot H_d + h.c.\}$$

 $+ \frac{\tilde{g}^2}{8} \Big[(H_d^{\dagger} H_d) - (H_u^{\dagger} H_u) \Big]^2 + \frac{g^2}{2} (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
• $\mathcal{L}_{\bar{b} \to \bar{q}}^{Higgs} = \kappa^{bq} \bar{b}_R q_L \Big[c_\beta h_u^{0*} - s_\beta h_d^{0*} \Big] + \kappa^{qb*} \bar{b}_L q_R \Big[c_\beta h_u^0 - s_\beta h_d^0 \Big]$

Why the cancellation?

$$\Delta M_q^{(m_b^2)} \propto \qquad \overline{b}_R \qquad h_d^0 \qquad h_d^{0*} \qquad b_R \qquad \Delta Q = 2 \implies = 0 \quad (\text{LO in 1/tan}\beta)$$

The amplitude is ruled by

•
$$V^{(0)} = m_1^2 H_d^{\dagger} H_d + m_2^2 H_u^{\dagger} H_u + B\mu \{H_u + h.c.\} \qquad B\mu = s_\beta c_\beta M_A^2,$$

$$+ \frac{\tilde{g}^2}{8} \Big[\Big(H_d^{\dagger} H_d \Big) - \Big(H_u^{\dagger} H_u \Big) \Big]^2 + \frac{g^2}{2} \Big(H_u^{\dagger} H_d \Big) \Big(H_d^{\dagger} H_u \Big) \qquad \text{for fixed } M_A$$

•
$$\mathcal{L}_{\bar{b} \to \bar{q}}^{Higgs} = \kappa^{bq} \bar{b}_R q_L \Big[c_\beta h_u^{0*} - s_\beta h_d^{0*} \Big] + \kappa^{qb*} \bar{b}_L q_R \Big[c_\beta h_u^{0-} - s_\beta h_d^{0} \Big]$$

0

After SSB, for tan $\beta \rightarrow \infty$ (i.e., $v_d \rightarrow 0$), the theory is invariant under

$$U(1)_{PQ}$$
: $Q(H_d) = Q(d_R^I) = 1$, $Q(other) = 0$

What are the leading contributions?

Look at <u>all</u> contributions with [1 suppression factor]

What are the leading contributions?

A/ Chirality-flipped contribution ("LR")

What are the leading contributions?

A/ Chirality-flipped contribution ("LR")

B/ Weak-scale loop contribution

$$\Rightarrow \Delta M_q^{WS} \propto \frac{m_b^2}{v^2} \times \underbrace{\frac{y_b^2}{16\pi^2}}_{16\pi^2}$$

increases $\Delta M_{d,s}$, but numerically small

C/ Higher dimension operator contribution

The higher dimension quark-Higgs effective vertices are also loop-suppressed.

Compensate the loop-suppression by a large $tan\beta$ factor

- \rightarrow Only non-negligible effect in rediagonalization of d-quark mass matrix
- \rightarrow Higgs FCNC of the type $\overline{d}_R^I d_L^J h_d^{0*} / \overline{d}_L^I d_R^J h_d^0$ as before, up to 1/tan β corrections.

C/ Higher dimension operator contribution

D/ Corrections to Higgs masses/mixings ("RR")

Corrections to the Higgs sector have already been extensively studied. However, contradictory statements about their effects on $B-\overline{B}$ mixing are found in the literature [Parry '06][Freitas,Gasser,Haisch '07]

 \Rightarrow go through them again

Matching MSSM \rightarrow 2HDM

At 1-loop, V has the most general structure compatible with gauge symmetry :

•
$$V^{(1)} = m_{11}^2 H_d^{\dagger} H_d + m_{22}^2 H_u^{\dagger} H_u + \{m_{12}^2 H_u \cdot H_d + h.c.\}$$

+ $\frac{\lambda_1}{2} (H_d^{\dagger} H_d)^2 + \frac{\lambda_2}{2} (H_u^{\dagger} H_u)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
+ $\{\frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + h.c.\}$
Ex: $\lambda_5 = -\frac{3|y_t|^4}{8\pi^2} \frac{a_t^2 \mu^2}{M_{\tilde{t}_R}^4} L_1 (M_{\tilde{t}_L}^2 / M_{\tilde{t}_R}^2) + ...$
 $L_1(x) = \frac{-1}{(1-x)^2} - \frac{(1+x)\ln x}{2(1-x)^3}$

Note: many refs!

[Haber, Hempfling '93][Carena, Espinosa, Quirós, Wagner '95][Beneke, Ruiz-Femenia, Spinrath '08]...

We keep arbitrary flavour and CP structures, and propose a definition for $\tan\beta$ in the effective 2HDM better suited to the large $\tan\beta$ regime.

Corrections to Higgs masses and mixings

+ Higgs WF renormalization in the effective FCNC vertices

Earlier approaches

[Parry '06] : Corrections to $\alpha, \beta, M_{h,H,A}$ using the FeynHiggs package

[Freitas,Gasser,Haisch '07] : δ .

$$\mathcal{F}^{-} \propto \frac{M_h^2}{M_H^2 - M_h^2} \mathcal{E}_{GP}$$

This pole singularity is not present in our result

There are many cancellations at play. These are built in in the effective Lagrangian approach. The non-vanishing of \mathcal{F}^- originates from the PQ-violating couplings λ_5 and λ_7 for large tan β .

Typical size of the new effect

$$\boldsymbol{X} = \frac{(\varepsilon_{Y} 16\pi^{2})^{2}}{(1 + \tilde{\varepsilon}_{3} \tan \beta)^{2} (1 + \varepsilon_{0} \tan \beta)^{2}} \frac{m_{t}^{4}}{M_{W}^{2} M_{A}^{2}} \left[\frac{\tan \beta}{50}\right]^{4} \begin{cases} |V_{ts}| = 0.041; F_{B_{s}} = 0.24 \, GeV \\ |V_{td}| = 0.0086; F_{B_{d}} = 0.20 \, GeV \end{cases}$$

$$\left(\Delta M_{\{s,d\}} = \left| \Delta M_{\{s,d\}}^{SM} + \begin{cases} -14 \ ps^{-1} \\ \sim 0 \ ps^{-1} \end{cases} \right| X \left[\frac{m_s}{0.06 \ GeV} \right] \left[\frac{m_b}{3 \ GeV} \right] \left[\frac{P_2^{LR}}{2.56} \right] \right. + \left\{ \begin{array}{c} +4.4 \ ps^{-1} \\ +0.13 \ ps^{-1} \end{array} \right\} X \left[\frac{M_W^2(-\lambda_5^* + \lambda_7^{*2} / \lambda_2)(16\pi^2)}{M_A^2} \left[\frac{m_b}{3 \ GeV} \right]^2 \left[\frac{P_1^{SLL}}{-1.06} \right] \right|$$

Can be complex! \odot

Typical size of the new effect

$$\mathbf{X} = \frac{(\varepsilon_{Y} 16\pi^{2})^{2}}{(1 + \tilde{\varepsilon}_{3} \tan \beta)^{2} (1 + \varepsilon_{0} \tan \beta)^{2}} \frac{m_{t}^{4}}{M_{W}^{2} M_{A}^{2}} \left[\frac{\tan \beta}{50}\right]^{4} \begin{cases} \left|V_{ts}\right| = 0.041; F_{B_{s}} = 0.24 \, GeV \\ \left|V_{td}\right| = 0.0086; F_{B_{d}} = 0.20 \, GeV \end{cases}$$

$$\Delta M_{\{s,d\}} = \left| \Delta M_{\{s,d\}}^{SM} + \begin{cases} -14 \ ps^{-1} \\ \sim 0 \ ps^{-1} \end{cases} \right| X \left[\frac{m_s}{0.06 \ GeV} \right] \left[\frac{m_b}{3 \ GeV} \right] \left[\frac{P_2^{LR}}{2.56} \right] \\ + \left\{ +4.4 \ ps^{-1} \\ +0.13 \ ps^{-1} \end{cases} X \left[\frac{M_W^2(-\lambda_5^* + \lambda_7^{*2} / \lambda_2)(16\pi^2)}{M_A^2} \right] \left[\frac{m_b}{3 \ GeV} \right]^2 \left[\frac{P_1^{SLL}}{-1.06} \right] \right|$$

However, typically:
$$M_{\tilde{q}} = \mu = a_{t,b} \Rightarrow \sim \frac{(y_t + y_b)}{2} \frac{M_W}{M_A^2}$$

New effect only for small $M_A \otimes$

Correlation to $B_q \rightarrow \mu^+ \mu^-$

$$\int \mathcal{B}(B_{\{s,d\}} \to \mu^+ \mu^-) = \left\{ \begin{array}{c} 3.9 \cdot 10^{-5} \\ 1.2 \cdot 10^{-6} \end{array} \right\} \left| X \right| \frac{M_W^2}{M_A^2} \left[\frac{\tan \beta}{50} \right]^2 \right\}$$

[Babu,Kolda '00] [Chankowski,Sławianowska '01] [Bobeth et al. '01] [Huang et al. '01] [Buras et al. '02][Isidori,Retico '01]

Scan of parameter space

MSSM with large $tan\beta$

 \Rightarrow Higgs-mediated FCNC

Systematic investigation of all Higgs-mediated contributions to $\Delta M_{s,d}$

- No new large effects are found
- In principle: corrections to Higgs masses/mixings relevant for small M_A
- Essentially excluded by the experimental upper bound on $\mathcal{B}(B_s \to \mu^+ \mu^-)$

Meson-antimeson mixing phenomenology:

- Correlation to $B_s \rightarrow \mu^+ \mu^-$ remains essentially intact
- ΔM_s : Max decrease of ~20% (~ 7%) for $\mu < 0$ ($\mu > 0$) if $M_A < 600 GeV$
- No possibility to account for sizeable CPV phases in the $B_{s,d}$ systems
IV. Imprints of large θ_{v} on (s)quark mixings in GUTs

Specific scenario : SUSY SO(10) model proposed by Chang, Masiero, Murayama (CMM)

Many related works: [Moroi '00][Baek et al. '00][Hisano,Shimizu '03][Harnik et al. '02] [Ciuchini et al. '03][Jäger,Nierste '03][Cheung et al. '07][Girrbach et al. '11]...

Main idea

$$\begin{array}{l} \textbf{Out matching condition:}\\ (SU(5) \text{ threshold}) \\ diag\left(m_{d}, m_{s}, m_{b}\right) \\ = diag\left(m_{e}, m_{\mu}, m_{\tau}\right) \end{array} \qquad \begin{array}{l} \textbf{V}_{d} = \textbf{V}_{e}^{T} \\ \textbf{V}_{e_{R}}^{*} = \textbf{V}_{d_{L}} = \textbf{V}_{CKM}^{\dagger} \textbf{V}_{u_{L}} \\ \textbf{V}_{d_{R}}^{*} = \textbf{V}_{e_{L}} = \textbf{V}_{PMNS} \textbf{V}_{V_{L}} \end{array}$$

 \Rightarrow In the sCKM basis (i.e., diagonalizing *d*-quark mass terms):

$$\left(\mathbf{M}_{\tilde{d}}^{2}\right)_{\mathrm{RR}}^{\mathrm{sCKM}} \simeq m_{\tilde{d}}^{2} \mathbf{V}_{\underline{PMNS}}^{*} \operatorname{diag}\left(1, 1, 1-\Delta_{\tilde{d}}\right) \mathbf{V}_{\underline{PMNS}}^{T}$$

Explicitly: imprints of θ_{atm} on $b \rightarrow s$ transitions

Tribimaximal v mixing:

$$\mathbf{V}_{PMNS} = \frac{1}{\sqrt{6}} P_L \begin{pmatrix} 2 & \sqrt{2} & 0 \\ -1 & \sqrt{2} & \sqrt{3} \\ 1 & -\sqrt{2} & \sqrt{3} \end{pmatrix} P_R$$

$$P_{L} = e^{i \operatorname{diag}(0,\alpha_{1} - \alpha_{2},\alpha_{1} - \alpha_{3})}$$
$$P_{R} = e^{-i \operatorname{diag}(\alpha_{1},\alpha_{4},\alpha_{5})}$$

(In the lepton sector: absorbed in field redef.)

Main idea

$$\begin{array}{l} \textbf{Out matching condition:}\\ (SU(5) \text{ threshold}) \\ diag\left(m_{d}, m_{s}, m_{b}\right) \\ = diag\left(m_{e}, m_{\mu}, m_{\tau}\right) \end{array} \quad \mathbf{V}_{d}^{T} = \mathbf{V}_{e_{L}}^{T} \\ \mathbf{V}_{e_{R}}^{*} = \mathbf{V}_{d_{L}} = \mathbf{V}_{CKM}^{\dagger} \mathbf{V}_{u_{L}} \\ \mathbf{V}_{d_{R}}^{*} = \mathbf{V}_{e_{L}} = \mathbf{V}_{PMNS} \mathbf{V}_{v_{L}} \end{array}$$

 \Rightarrow In the sCKM basis (i.e., diagonalizing *d*-quark mass terms):

$$\left(\mathbf{M}_{\tilde{d}}^{2}\right)_{\mathrm{RR}}^{\mathrm{sCKM}} \simeq m_{\tilde{d}}^{2} \mathbf{V}_{\underline{PMNS}}^{*} \operatorname{diag}\left(1, 1, 1-\Delta_{\tilde{d}}\right) \mathbf{V}_{\underline{PMNS}}^{T}$$

Main idea

$$\begin{array}{c} \textbf{Outraction:}\\ (SU(5) \text{ threshold}) \\ diag\left(m_{d}, m_{s}, m_{b}\right) \\ = diag\left(m_{e}, m_{\mu}, m_{\tau}\right) \end{array} \quad \textbf{V}_{e}^{T} = \textbf{V}_{d_{L}} = \textbf{V}_{CKM}^{\dagger} \textbf{V}_{u_{L}} \\ \textbf{V}_{e_{R}}^{*} = \textbf{V}_{e_{L}} = \textbf{V}_{PMNS}^{\dagger} \textbf{V}_{v_{L}} \\ \textbf{V}_{d_{R}}^{*} = \textbf{V}_{e_{L}} = \textbf{V}_{PMNS} \textbf{V}_{v_{L}} \\ \hline m_{d/s} = m_{e/\mu} \quad must \ be \ corrected \end{array} \quad \Rightarrow \quad effects \ also \ in \ s \rightarrow d \ and \ b \rightarrow d \\ \textbf{New contributions to } \phi_{d}? \end{array}$$

[S.T., Westhoff, Wiesenfeldt '09]

Corrections to Yukawa unification

Introduce effective Yukawa interactions at the GUT scale

In SU(5), matter fields in $\overline{5}^{I}$, 10^{J} , Higgs fields in 24_{H} , $5_{H}(\ni H_{u})$, $\overline{5}_{H}(\ni H_{d})$:

Corrections to Yukawa unification

Introduce effective Yukawa interactions at the GUT scale

In SU(5), matter fields in $\overline{5}^{I}$, 10^{J} , Higgs fields in 24_{H} , $5_{H}(\ni H_{u})$, $\overline{5}_{H}(\ni H_{d})$:

$$(\mathcal{L}_{Y}^{e,d})^{5d} = \left(10^{Iab} \mathbf{Y}_{\sigma_{1}}^{IJ} \,\overline{5}_{a}^{J}\right) \frac{24_{Hb}^{c}}{M_{Pl}} \,\overline{5}_{Hc} + \left(10^{Iab} \mathbf{Y}_{\sigma_{2}}^{IJ} \,\overline{5}_{c}^{J}\right) \frac{24_{Hb}^{c}}{M_{Pl}} \,\overline{5}_{Ha}$$
$$\left\langle 24_{H} \right\rangle = \boldsymbol{\sigma} \, diag(2,2,2,-3,-3)$$

Corrected GUT matching condition:

$$\begin{aligned} \mathbf{Y}_{d} &= \mathbf{Y}_{e}^{T} + 5 \frac{\sigma}{M_{Pl}} \mathbf{Y}_{\sigma_{2}} \\ diag\left(m_{d}, m_{s}, m_{b}\right) & & \mathbf{V}_{e}^{*} = \delta \mathbf{V}_{e_{R}} \mathbf{V}_{d_{L}} = \delta \mathbf{V}_{e_{R}} \mathbf{V}_{cKM}^{\dagger} \mathbf{V}_{u_{L}} \\ &= diag\left(m_{e}, m_{\mu}, m_{\tau}\right) \\ + \frac{\sigma}{M_{Pl}} diag\left(\delta_{m_{d}}, \delta_{m_{s}}, \delta_{m_{b}}\right) \end{aligned}$$

Corrections to Yukawa unification

Introduce effective Yukawa interactions at the GUT scale

In SU(5), matter fields in $\overline{5}^{I}$, 10^{J} , Higgs fields in 24_{H} , $5_{H}(\ni H_{u})$, $\overline{5}_{H}(\ni H_{d})$:

$$(\mathcal{L}_{Y}^{e,d})^{5d} = \left(10^{Iab} \mathbf{Y}_{\sigma_{1}}^{IJ} \,\overline{5}_{a}^{J}\right) \frac{24_{Hb}^{c}}{M_{Pl}} \,\overline{5}_{Hc} + \left(10^{Iab} \mathbf{Y}_{\sigma_{2}}^{IJ} \,\overline{5}_{c}^{J}\right) \frac{24_{Hb}^{c}}{M_{Pl}} \,\overline{5}_{Ha}$$
$$\left\langle 24_{H} \right\rangle = \boldsymbol{\sigma} \, diag(2,2,2,-3,-3)$$

Corrected GUT matching condition:

CMM model: SUSY-conserving sector

SUSY SO(10) GUT, matter fields in spinor representation 16^{I}

 $\begin{array}{ccc} 16_{H}, 16_{H}, 45_{H} & 45_{H} & 10_{H}, 10_{H} \\ \\ \text{SSB: SO(10)} \longrightarrow \text{SU(5)} \longrightarrow \text{SU(3)}_{C} \times \text{SU(2)}_{L} \times \text{U(1)}_{Y} \longrightarrow \text{SU(3)}_{C} \times \text{U(1)}_{Q} \end{array}$

CMM model: SUSY-conserving sector

SUSY SO(10) GUT, matter fields in spinor representation 16^{11}

 $16_{H}, 16_{H}, 45_{H} \qquad 45_{H} \qquad 10_{H}, 10_{H}$ SSB: SO(10) \longrightarrow SU(5) \longrightarrow SU(3)_C×SU(2)_L×U(1)_Y \longrightarrow SU(3)_C×U(1)_Q

Corrections to Yukawa unification via SU(5)-breaking vev of 45_H :

$$\mathbf{Y}_d = \mathbf{Y}_e^T + 5\frac{\boldsymbol{\sigma}}{\boldsymbol{M}_{10}}\mathbf{Y}_{\boldsymbol{\sigma}}$$

CMM model: SUSY-conserving sector

SUSY SO(10) GUT, matter fields in spinor representation 16^{I}

 $\begin{array}{ccc} 16_{H}, 16_{H}, 45_{H} & 45_{H} & 10_{H}, 10_{H}^{'} \\ \\ \text{SSB: SO(10)} \longrightarrow \text{SU(5)} \longrightarrow \text{SU(3)}_{C} \times \text{SU(2)}_{L} \times \text{U(1)}_{Y} \longrightarrow \text{SU(3)}_{C} \times \text{U(1)}_{Q} \end{array}$

$$W_{Y} = \left(16^{I} \mathbf{Y}_{1}^{IJ} 16^{J}\right) 10_{H} + \left(16^{I} \mathbf{Y}_{N}^{IJ} 16^{J}\right) \frac{\overline{16}_{H} \overline{16}_{H}}{M_{Pl}} + \left(16^{I} \mathbf{Y}_{2}^{IJ} 16^{J}\right) \frac{45_{H}}{M_{Pl}} 10_{H}$$

$$u^{I} \text{ and } v^{I} \text{ masses}$$

$$d^{I} \text{ and } e^{I} \text{ masses}$$

Hyp: \mathbf{Y}_1 and \mathbf{Y}_N can be diagonalized simultaneously. In that basis:

$$\mathbf{V}_{e_R}^* = \delta \mathbf{V}_{e_R} \mathbf{V}_{CKM}^{\dagger}, \quad \mathbf{V}_{d_R}^* = \delta \mathbf{V}_{d_R} \mathbf{V}_{PMNS}$$

Visible effect of $\theta \neq 0$?

Corrections to Yukawa unification via SU(5)-breaking vev of 45_H :

$$\mathbf{Y}_d = \mathbf{Y}_e^T + 5\frac{\boldsymbol{\sigma}}{\boldsymbol{M}_{10}}\mathbf{Y}_{\boldsymbol{\sigma}}$$

CMM model: SUSY-breaking sector

In the sCKM basis (i.e., diagonalizing *d*-quark mass terms):

$$\left(\mathbf{M}_{\tilde{d}}^{2}\right)_{\mathrm{RR}}^{\mathrm{sCKM}} \simeq m_{\tilde{d}}^{2} \left(\delta \mathbf{V}_{d_{R}} \mathbf{V}_{PMNS}\right)^{*} diag \left(1,1,1-\Delta_{\tilde{d}}\right) \left(\delta \mathbf{V}_{d_{R}} \mathbf{V}_{PMNS}\right)^{T}$$

$$\prod_{i=1}^{\mathrm{IB}} m_{\tilde{d}}^{2} \left(\begin{array}{cc} 1-\frac{1}{2}\Delta_{\tilde{d}} \left(\sin\theta\right)^{2} & \frac{1}{4}\Delta_{\tilde{d}} \sin(2\theta) \ e^{-i\phi_{K}} & \frac{1}{2}\Delta_{\tilde{d}} \sin\theta \ e^{-i\phi_{B}} \\ \frac{1}{4}\Delta_{\tilde{d}} \sin(2\theta) \ e^{i\phi_{K}} & 1-\frac{1}{2}\Delta_{\tilde{d}} \left(\cos\theta\right)^{2} & -\frac{1}{2}\Delta_{\tilde{d}} \cos\theta \ e^{-i\phi_{B_{s}}} \\ \frac{1}{2}\Delta_{\tilde{d}} \sin\theta \ e^{i\phi_{B}} & -\frac{1}{2}\Delta_{\tilde{d}} \cos\theta \ e^{i\phi_{B_{s}}} & 1-\frac{1}{2}\Delta_{\tilde{d}} \end{array} \right)$$

Rem: $\phi_B = \phi_{B_s} + \phi_K$

$b \rightarrow s, b \rightarrow d, s \rightarrow d$ flavour transitions

Main effect from quark-squark-gluino vertices:

Typical $\Delta_{\tilde{d}}$ values

6 SUSY inputs at the weak scale: $m_{\tilde{g}}, m_{\tilde{d}}, m_{\tilde{u}}, a_d^1 \equiv \mathbf{A}_d^{11} / \mathbf{Y}_d^{11}$, $\arg(\mu)$, $\tan \beta$

RGE to $\mu \leq O(M_{Pl})$ and back to impose GUT relations and universality of SB terms

[Girrbach,Jäger,Knopf,Martens, Nierste,Scherrer,Wiesenfeldt '11]

Look at flavour-diagonal and $b \rightarrow s / \tau \rightarrow \mu$ constraints:

 $\begin{array}{c} \overbrace{M_{h}} & \parallel \parallel \\ b \rightarrow s\gamma, & \tau \rightarrow \mu\gamma, \\ \Delta M_{B_{s}} \text{ (specify } \phi_{B_{s}} \text{), ...} \end{array}$

$B_s - \overline{B}_s$ mixing phase

Phase measured in $B_s \rightarrow J / \psi \phi$ time-dependent angular distribution:

CDF+D0
$$-2\beta_s^{\text{eff}} = (-0.83^{+0.30}_{-0.36}) \cup (-2.31^{+0.36}_{-0.30})$$
 [HFAG '10]
SM $-2\beta_s^{SM} \simeq -0.04 \rightarrow 2.3\sigma$ discrepancy

CMM contributions are able to reduce this discrepancy down to 1σ

Constraints from $K - \overline{K}$ mixing

Constraints from $B - \overline{B}$ mixing

 $\sin(2\phi_K)$ close to zero \Rightarrow look at the *B* system. Typically: $\theta^{\max} = 10^{\circ} - 30^{\circ}$

$$\begin{array}{c} \underline{\text{example 1}} & m_{\tilde{g}} = 700 \,\text{GeV}, \ m_{\tilde{d}}^2 / m_{\tilde{g}}^2 = 8, \ \Delta_{\tilde{d}} = 0.44 \\ \underline{\text{example 2}} & m_{\tilde{g}} = 400 \,\text{GeV}, \ m_{\tilde{d}}^2 / m_{\tilde{g}}^2 = 25, \ \Delta_{\tilde{d}} = 0.52 \end{array}$$

Impact on unitarity triangle analysis

• Limit case 1: $\theta = 0$, $\phi_K \neq 0 \Rightarrow$ CMM effects in $B_s - \overline{B}_s$ mixing only example 2 $(m_{\tilde{g}} = 400 \,\text{GeV}, \ m_{\tilde{d}}^2 / m_{\tilde{g}}^2 = 25, \ \Delta_{\tilde{d}} = 0.52)$ with $\phi_{B_s} = 0.7$

Impact on unitarity triangle analysis

• Limit case 2: $\theta \neq 0$, $\phi_{\overline{K}} = 0 \Rightarrow$ CMM effects in $B_s - \overline{B}_s$ and $B - \overline{B}$ mixing example 2 ($m_{\tilde{g}} = 400 \,\text{GeV}, \ m_{\tilde{d}}^2 / m_{\tilde{g}}^2 = 25, \ \Delta_{\tilde{d}} = 0.52$) with $\phi_{B_s} = \phi_B = 0.7, \ \theta = 0.1$

ρ

Conclusion (scenario 2)

Yukawa unification $\mathbf{Y}_d = \mathbf{Y}_e^T$

$$\Rightarrow \ heta_{atm}$$
 can contaminate $\widetilde{b}^{-}\widetilde{s}^{\circ}$ mixing

Corrections to Yukawa unification

 \Rightarrow Impact of θ_{atm} on $(\tilde{s}) \rightarrow (\tilde{d})$ and $(\tilde{b}) \rightarrow (\tilde{d})$ transitions, governed by a new parameter θ (+phases)

From K mixing (ε_K) : either θ or ϕ_K must be unnaturally small

 \Rightarrow Another aspect of the flavour problem in SUSY GUTs

Meson-antimeson mixing phenomenology:

- Possibility to account for a sizeable CPV phases in the $B_{s,d}$ systems
- Effects on UT analysis

Conclusion

Flavour-blind SUSY breaking does not (always) mean that flavour observables are automatically accounted for...

- 2 examples:
 - MSSM with large $tan\beta$
 - MSSM in SO(10) context (\neq mSUGRA!)

Flavour-blind: less parameters \rightarrow *better tested*

- In particular, if a large ϕ_s is confirmed, can it be accounted for?
 - MSSM with large $tan\beta$: NO
 - MSSM in SO(10) context: YES

« SM flavour problem » (Yukawa structure) still to be addressed...