27 – 29 Oct. 2007 @ CC-IN2P3, Lyon, France Day2 14:15 - 14:55 (40min)

Workshop KEK - CC-IN2P3

KEK new Grid system

Koichi Murakami, KEK/CRC

List of items to be configured towards the new Grid system

Computer System on KEK/CRC

- "Central Computing System" as a part of "Central Information System"
 - CIS provides general information services on KEK.
 mail system, web system, Indico, etc.
 - CCS provides work servers, batch servers, and storage system.
 - LCG system is operated.
- B Factory Computer System
 - dedicated to analysis of the Belle experiment
 - including Grid testing servers
- Supercomputer System
 - Hybrid system of a vector machine (Hitachi SR11000) a scalar system (IBM Blue Gene)
 - There are also data grid activities on Lattice QCD

Central Information System

Central Computing System (KEKCC)

Computing Servers

- Linux (RedHat ES4) cluster
- 76 nodes (AMD Opteron 252 x 2), 4GB memory/node
- Disk System
 45TB disk storage

HPSS Data Storage
 HPSS tape library

maximum capacity of 320TB

Grid System
 LCG system
 KEK-2 is operated
 24 WNs, 2TB disk storage
 SRB system, AFS servers

System Replacement of CI System

- The current Central Information System is rental system of 3 years duration.
 - 2006/Feb. 2009/Jan.
- System replacement ("upgrade") is scheduled on 2009/Feb.
 - again, rental for 3 years
 - We are collecting requirements for system specifications from experimental groups.
 - HEP exp., Neutron exp. at J-PARC, ATLAS, ILC, Acc., Theory
- Estimated amount of computing resources
 - ~2,000 cores of CPU
 - LSF as batch system
 - ~4PB storage (~500TB as disk)
 - HPSS or Storage Tek

System Structure of B Computer System

Koichi Murakami, KEK/CRC

28 November 2007

	Capability	# of racks	Electrical Power Consumption (kW)
Таре	3.5 PB	21	6
Disk	1 PB	13	60
CPU	2280 CPU	23	475
Login node	80 node 80 TB	8	70
DAQ	100 TB	3	22

633 kW in total

- = 1208 nodes = 2416CPU
- = 45,662 SPEC CINT 2k rate = 5,114 kSI2K base
- = 8.7THz
- DELL Power Edge 1855
 - Xeon3.6GHz x2, memory 1GB
- Linux
 - CentOS/CS, REL/WGS

Belle Storage System – disk -

1PB, on 42 File Servers
Nexan + ADTeX + SystemWks
SATAII 500G drive ×~2k
~1.8 f/day
HSM = 370TB non HSM (no backup) = 630TB

Array Master 15dr/3U/8TB

SATABeast 42dr/4U/21TB

Bell Storage System – tape -

Tape Library

- 3.5PB + 60 drives
 + 13 servers
- SAIT 500GB/volume
- 30MB/s drive
- SONY SAIT-PetaSite

Work File Server Backup 90TB + 12 drives + 3 servers LTO3 400GB/volume NetVault

Upgrade plan for B Computer System

rental for 6 years duration

JFY April - March	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Computing Server	WS		WS+PC			PC			?						
Throughput SPECint rate2K	100			1,250			42,500		▶ 68,000						
Speed (kSI2K) SPECint2K base	11		140			4,760		▶ 7,600							
Disk (TB)	4			9			1,000			1,500					
Tape (TB)	160			620			3,500								
Work Group Server # of hosts	3+(9)		11			80+16FS									
User Workstation # of hosts	25WS+68X			23WS+100PC			128PC								

Status of Grid Deployment

- Current Grid environments are deployed as a "fragment" of these computer system
 - R&D for how to utilize Grid environment, trying distributed analysis using Grid technology
 - mainly focused on applications other than LHC activities
- Gradual integration of Grid environment
 - Co-operation with the current (non-Grid) system is mandatory.
 - accumulating knowledge for Grid operation

Concerns about Grid deployment

- Support for both non-Grid and Grid users
- System configuration of such "*hybrid*" system is a key issue.
 - resource management of batch servers
 - job submission using LSF
 - providing LFC access using SRB-DSI/HPSS-DSI with SE
 - using virtualization technology (VM) for more robust and performant operation
- Interoperability between NAREGI and LCG
 - choice of GRID middleware
- There might be one possibility of migrating two computer system in the next next system replacement (2012) as a further prospect?
 - more efficient resource management in different aspects

Technical stuffs toward new Grid system

- Job submission via LSF on CE/WN
 - sharing resources with locally submitted jobs and grid jobs
 - optimization of setting parameters for practical operation
- SE integration
 - LFC accesses to a large scale of storage system (SRB/HPSS)
 - We can access to both SRB-DSI and HPSS-DSI via GridFTP, but not use LFC.
 - HSM access by using SRB-DSI and HPSS-DSI on SRM
- More robust and flexible operation
 - system configuration /operation using VMs
- Networking/Security
 - We were suffered from restrictions due to a domestic security policy!
 - ((need for *bureaucratic*? (not technical) global security assurance mechanism.))

Integration of different components

Summary

- Computer system on KEK/CRC
 - Central Information System
 - Belle Computing System
 - Grid environments are deployed as a "fragment" of these computer system
- Central Computing System will be replaced on 2009/Feb.
 - Migration of Grid environment
 - Support for both non-Grid and Grid access
- Technical items and plans towards new Grid system