JET CONSTITUENTS JET FORMATION

Jet algorithms combine the
clusters into jets, according

to their p; and relative
separation [1].

The resulting jets are formed

with a pre-defined radius, R, in n-¢ space.

Two types of jets have been used for
substructure studies to date:

Jets are 4-vector summations of
clusters of calorimeter cells which
have significant signal to noise ratio.

Clusters are classified as EM or

hadronic based on shape, depth and

energy density.

Type-specific cluster o |
calibration applied
to account for

non-compensating

calorimeter.

SISy

Signal to noise threshold
for calorimeter cells of two
clusters

First Measurements of Jet Substructure in ATLAS ==\

Anti-k, R = 1.0 [2]
Hardest constituents
combined first. Gives
circular jets resilient to soft
radiation.

Cambridge-Aachen,
R =1.2[3]

Closest constituents
clustered first.

SUBSTRUCTURE VARIABLES

Jets are complicated com

Key properties currently studied in detail:

1. Jet mass: powerful for identificatio

posite objects!

n of the parent particle.

2 (sum over constituents)
Myt = (Z Ei)Z +(Z pi)z

Splitting scale: energy at which the |

Distinguishes heavy particle decays from

asymmetric QCD splittings.
min(pra, pre) X ORap

Effect of splitting and filtering

et splits in two.

CALIBRATION

Additional correction required to restore
the true jet energy scale, additional to
that applied to the jet constituents.

ATLAS uses Monte Carlo simulations to
derive corrections to jet energy and
pseudorapidity, for standard jet sizes.

Additional correction factors
calculated for mass of these large jets,
due to the importance of their mass for
particle identification.

Splitting creates two sub-jets with significantly lower mass. Filtering then identifies

three smaller hard jets and hence removes contamination from the underlying event.
Minimum allowed separation of the split jets will be limited to 0.3 until

greater understanding of the detector

resolution Is achieved.

Particularly effective for Higgs identification
with symmetric decay (e.g. b quark pair)
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UNDERSTANDING SUBSTRUCTURE WITH THE ATLAS DETECTOR

COMPARISONS TO THEORETICAL MODELS

Jets measured with the calorimetry system in | n | < 3.2. These large | A sample of inclusive jets was collected from a 35 pbL of proton-proton collisions at ~/S = 7 TeV [4]. Predictions from leading order parton
shower Monte Carlo generators are in agreement with data, indicating that jet substructure generated by QCD radiation is well understood.

THE ATLAS CALORIMETERS

radius jets encompass a significant proportion of the calorimeters.

Scintillating-tile design for hadronic processes.

Liquid argon (LAr) sampling calorimeter

for electromagnetic processes, et of radiue 1.

with fine granu|arity: Tile barrel ¥ Tile extended barrel

Cells in Layer 3
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EFFECT OF MULTIPLE INTERACTIONS
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Larger jets found to have a
greater dependence on number
of interactions in the event, N,,.
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Splitting / filtering reduces this
dependence. The application of
other jet grooming techniques is
being investigated.
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Anti-k; R = 1.0 jet mass and first splitting scale, at detector level.
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Cambridge-Aachen R = 1.2 split / filtered jets.

Jet mass unfolded to particle level.

SYSTEMATIC UNCERTAINTIES

In order to use the mass and substructure characteristics for particle identification, an estimation of the systematic uncertainty associated
with these measurements has been performed. A comparison of jets reconstructed using energy deposits in the calorimeter and tracks in the
Inner detector enables an estimation of this uncertainty, since these sub-detectors have largely uncorrelated systematic effects.
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The ratios of masses of the two types of
jets are compared between data and
Monte Carlo. Maximum discrepancy sets
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the systematic uncertainty, in this case,
on the anti-k; R = 1.0 jet mass scale.
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WHEN CAN KNOWLEDGE OF JET SUBSTRUCTURE HELP?

HIGGS -> B QUARK PAIR SEARCH

W, Z

boosted Higgs:
« Central decay products ar
detector acceptance

 Reduced ttbar background

q

Extremely promising search channel for

BOOSTED TOP IDENTIFICATION

As mass of top pair increases,

e within .
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Boosted Higgs decay produces one jet
composed of two merged b-jets.
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requires a leptonically decaying
W boson with p; > 200 GeV [5].

hadrontCtopcandMate Red: anti-k; R = 0.4 jets
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For Mtt = 1 TeV, a 70% probability that two
partons will merge to a cone with R = 0.8
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Conventional approach: resolve the decay products
using jets with R=0.4

Boosted approach: use a large jet (e.g. anti-k; R=1.0)
to contain all decay products, and probe the substructure.

The use of jet substructure is important for top measurements

at LHC energies and vit

al for ttbar resonance searches.

Key variables for discrimination of top against QCD background processes [6]:
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Boosted tops in 2011 data

Green: anti-ky R = 1.0 jets
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at energy ~ W mass p; of lepton divided by energy in
cone AR around the lepton,
wherear 258V
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