

Measurement of the top quark mass at ATLAS EPS – HEP 2011 Grenoble

Diane Cinca for the ATLAS collaboration, PhD student LPC Clermont-Ferrand – diane.cinca@cern.ch

<complex-block>

Introduction

The top quark has been discovered in 1995 at Fermilab. It is the only known fundamental particle with a natural mass, close to electroweak scale.

The top quark large mass makes it strongly interact with the Higgs sector.

 \rightarrow Its precise measurement can put constraints on the yet unobserved Higgs boson mass, last piece of the Standard Model puzzle.

 \rightarrow The top quark could play a key role in **EWSB** and have preferential connection to **New Physics.**

In 2010, LHC delivered proton-proton collisions at a 7 TeV centre-of-mass energy for an integrated luminosity about 35 pb⁻¹

This amount of data allows for the first mass measurement to be performed.

In the predictions for QCD beyond leadingorder predictions, **top quark mass** depends on **the renormalisation scheme**.

Direct measurement depends on the simulation: top quark mass doesn't correspond to a well defined renormalisation scheme.

Top mass from cross section measurement

Theoretical cross section predictions, as a function of m_{top}, are obtained from NNLO and NLO+NNLL approximations.

Use as experimental input the measured cross section obtained by using a topological likelihood discriminant.

Top quark mass is extracted maximising a likelihood function composed of theoretical and experimental PDFs.

Semileptonic top event reconstruction

top reconstruction: highest p_T combination of jets

2 channels studied :

 \succ e channel: lepton = electron

 $\succ \mu$ channel: lepton = muon

3 jets product : Need to control the Jet

lepton + jets

direct reconstruction from decay

Energy Scale (JES) : 3 methods developed.

Direct top mass measurement

2-D template method

Use reconstructed W and top mass in a simultaneous measurement of m_{top} and a global Jet energy Scale Factor (JSF):

→ Kinematic fit on W to enhance the reconstruction.

2-D templates:

Diane Cinca for the ATLAS collaboration,

m_{top} with references on different mass points and different JSF values

> m_W with different JSF references.

Simultaneous likelihood maximisation on data

 $m_{top} = 166.1 \pm 4.6 \text{ (stat)} \pm 4.4 \text{ (syst)} \text{ GeV/c}^2$

I-D R₃₂ template method

- $> R_{32}$ references for different top masses.
- > Likelihood maximisation on the data.

I-D kinfit analysis

Full kinematic fit likelihood fit to the decay topology.

Use transfer function to map reconstructed object to parent partons.

Use constraints on both hadronic and leptonic W and top masses.

Very good top mass resolution, but full sensitivity to JES uncertainty.

> Template with top mass references for different mass values.

Likelihood maximisation on data.

diane.cinca@cern.ch

More than 1 fb⁻¹ recorded in July 2011 New measurements ongoing...

Based on ATLAS-CONF-2011-033 & ATLAS-CONF-2011-054