Highlights and Searches in ATLAS

Dave Charlton University of Birmingham on behalf of the ATLAS Collaboration

EPS-HEP Grenoble, 25 July 2011

Highlights and Searches in ATLAS

ATLAS status and data Performance Beyond Standard Model searches A few words on the Higgs Other plenary talks: EW, top, b, QCD, H

Dave Charlton University of Birmingham on behalf of the ATLAS Collaboration

EPS-HEP Grenoble, 25 July 2011

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, UAN Bogota, Bologna, Bonn, Boston, Brandeis, Brasil Cluster, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, CERN, Chinese Cluster, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, SMU Dallas, UT Dallas, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Edinburgh, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, Göttingen, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Iowa, UC Irvine, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, RUPHE Morocco, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, LMU Munich, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, Northern Illinois, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, NPI Petersburg, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Regina, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, South Africa, Stockholm, KTH Stockholm, Stony Brook, Sydney, Sussex, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Toronto, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, UI Urbana, Valencia, UBC Vancouver, Victoria, Waseda, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale, Yerevan

ATLAS Detector

2T solenoid, toroid system ($\int Bdl=1-7.5 \text{ Tm}$) Tracking to $|\eta|=2.5$, calorimetry to $|\eta|=4.9$

Image: Solution of the construction of the construction

Data Collection

2010 operation: gradual (~exponential) ramp-up of instantaneous luminosity

2011 - sustained delivery of integrated luminosity

1 fb⁻¹ of 2011 data recorded by 17 June

1.75 Peak luminosity 1.28 x 10³³ cm⁻²s⁻¹

Best in a day: 63 pb⁻¹

Results with up to 1.2 fb⁻¹

Pile-up Challenge

50 ns bunch trains for ~all 2011 data

Substantial in- and out-of-time pileup

- Much progress understanding impact on performance, with data & simulation
- Continuing detailed performance studies

Characterise by p- mean number of interactions per bunch-crossing

 $Z \rightarrow \mu \mu$ event with 11 primary vertices

Luminosity Measurement

Absolute luminosity calibration

- beam-beam (van der Meer) scans
- both with special and physics beams

Quality of VdM scans was excellent

Several relative measures of instantaneous luminosity in physics

Powerful cross-checks

Pileup dependence of different luminosity estimators → small additional uncertainty in 2011 relative to 2010

> $\Delta L/L = \pm 3.4\%$ (2010, prel) $\Delta L/L = \pm 3.7\%$ (2011, prel)

see also V Hedberg parallel talk,C Gabaldon poster

Trigger

Primary triggers are kept stable, e.g.

- Inclusive e p_T>20 GeV
- Inclusive μp_{T} > 18 GeV
- Inclusive jet p₇>180 GeV
- $E_{T}^{miss} > 60 \text{ GeV}$
- Diphoton $p_{T} > 20 \text{ GeV}$

Such triggers are not prescaled Supplemented by supporting & monitoring triggers Sophisticated and flexible menus

trigger	L1 item	L1 Rate (Hz)	EF Rate (Hz)
e20_medium	EM14	8500	50
2e12_medium	2EM7	5700	1
g80_loose	EM30	700	3
2g20_loose	2EM14	750	2
mu18	MU10	5300	40
2mu10	2MU10	100	1
xe60	XE40	300	4
j180	J75	200	6
tau29medium_xe35	TAU11_XE20	3800	6
tau16_e15	TAU6_EM10	7500	6
j75_xe45	J50_XE20	500	10

Rates at 10³³cm⁻²s⁻¹

Detector Performance and Data Quality

Data-taking efficiency >95%

Operational fractions of detector also >~97%

Data for analyses depends on specific detector requirements

Of 1.24 fb⁻¹ collected by end June, between **1.04 and 1.21 fb⁻¹** for most results presented

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	96.8%
SCT Silicon Strips	6.3 M	99.1%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.8%
Tile calorimeter	9800	97.5%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	97.7%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	98.1%

Inne D	er Track etector	ing s	Calorimeters			N	Muon Detectors			Magnets		
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	csc	TGC	Solenoid	Toroid
99.9	99.8	100	89.0	92.4	94.2	99.7	99.8	99.7	99.8	99.7	99.3	99.0

"All good" fraction will increase by ~7% in reprocessing campaign starting now (finegrained flagging of calo noise bursts)

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at Vs=7 TeV between March 13th and June 29th (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future. The magnets were not operational for a 3-day period at the start of the data taking.

Computing Grid Delivers Physics

Data preparation:

- First-pass reco. at Tier-0 within ~2 days
- Calibration/DQ good for physics analysis
- Data analysable on Grid within ~1 week

Tier-1 and Tier-2's process ~²/₃ M jobs per day

- simulation
- re-reconstruction (campaigns)
- group production (ntuples...)
- physics analysis

The high quality computing system allows us to show results on data taken until the end of June

Payback for the years of investment and hard work

Performance for Physics

ATLAS preliminary

ρ

3.5

ATLAS Preliminary.

L dt = 0.70 fb

110

M_{u⁺u⁻} [GeV]

120

Data 2011, √s = 7 TeV

100

mee [GeV]

3

1800

see also A Gibson parallel talk,T Dietzsch poster

Dijet Resonance Search

Search for peaks in the m_{jj} spectrum Examples: q*, axigluon, colour-octet scalar models - also generic limits

10

 10^{2}

10

ATLAS Preliminary

Data

 $\sqrt{s} = 7 \text{ TeV}$

 $L dt = 0.81 \text{ fb}^{-1}$

Mass [GeV]

— Fit

2010 analyses studying also angular distributions: New J Phys 13 (2011) 053044

see also T Hryn'ova parallel talk

Physics with Taus

Z→ττ crosssection measurement

A/H/h→ττ

SUSY models

channels

Monojet: Jet + E_T^{miss}

High- p_{τ} jet opposite ~no activity

- Standard Model: $Z \rightarrow vv$
- Large-extra dimensions with unobserved graviton 4+n dimensions, 4+n-dimensional Planck scale M_D

If we only consider $\hat{s} < m_p^2$, $m_p > 1.68$ TeV for n=6

20 see also A Gibson parallel talk, V Rossetti poster

A high-p_T monojet event - SM interpretation $Z \rightarrow vv + jet$

Massive Di-Bosons

Low cross-sections: observation is a step towards searching with these final states

WW: ATLAS-CONF-2011-110 WW: ATLAS-CONF-2011-110 22 see also A Oh parallel talk

Massive Di-Bosons

Events / 10 GeV

tt Resonance Search

Reconstruct semileptonic $t\bar{t}$ events, examine $m(t\bar{t})$ distribution for possible resonances

Limits on

- narrow resonance: topcolour Z'→tt in a leptophobic scenario
- wide resonance (RS model) $g_{KK} \rightarrow t\bar{t}$

Limits on σ .B in few pb range for $m_{_{H}} \sim 1 \text{ TeV}$

see also T Kuhl parallel talk, R Camacho Toro poster

Wealth of searches in ATLAS look for SUSY signatures in various topologies

ATLAS has results from:

- Zero leptons, jets and E_{τ}^{miss}
- Zero leptons, b-jets and E_T^{miss}
- One lepton, jets and $E_{\!\tau}^{\rm \ miss}$
- Lepton pairs and E_{τ}^{miss} like flavour/like sign/opposite sign
- Multileptons, jets and $E_{\!\tau}^{\rm \ miss}$
- $\gamma\gamma$ and E_{τ}^{miss}
- RPV $\widetilde{\nu_{\tau}} \rightarrow e\mu$ (earlier)
- R-hadrons in inner tracker and calorimeter
- Stable τ or gluino R-hadrons, via muon system

79

SUSY in 0-lepton channel

Strong production: gg, gq, qq

Multi-jet plus E_T^{miss} , e/μ veto Analysis includes ≥ 4 jet event category

SUSY in 0-lepton channel

MSUGRA/CMSSM: tanB=10, $A_0=0$, $\mu>0$ Equal mass case: $m_{\tilde{q}}=m_{\tilde{g}} > 980$ GeV

Simplified model with two \tilde{q} generations, $m(\tilde{\chi}_1^{o}) \sim 0$ $m_{\tilde{g}} > 800 \text{ GeV}$ $m_{\tilde{q}} > 850 \text{ GeV}$ Equal mass case: $m_{\tilde{g}} = m_{\tilde{q}} > 1.075 \text{ TeV}$

SUSY in 0_l+b-jets channel

Models in which \widetilde{b}_1 or \widetilde{t}_1 is lightest squark

 \rightarrow gg, gq, qq production/decay gives final-states with b-quarks and E_{τ}^{miss}

Jets and E_{τ}^{miss} topology, at least one b-tagged

SUSY in 1-lepton channel

m_{eff} [GeV]

	ATLAS Searches* - 95% CL Lower Limits (EPS-HEP 2011)					
MSUGRA/CMSSM : 0-lep + E _{T,miss}	L=1.04 fb ⁻¹ (2011) [preliminary]	and Gev q̃ = g̃ mass				
Simplified model (light $\tilde{\chi}_{i}^{u}$) : 0-lep + $E_{T,miss}$	L=1.04 fb ⁻¹ (2011) [preliminary]	1.075 TeV q̃ = g̃ mass	ATLAS			
Simplified model (light $\tilde{\chi}_{i}^{*}$) : 0-lep + $E_{T,miss}$	L=1.04 fb ⁻¹ (2011) [preliminary]	aso Gev q̃ mass	Preliminary			
Simplified model (light $\overline{\chi}_{1}^{o}$) : 0-lep + $E_{T,miss}$	L=1.04 fb ⁻¹ (2011) [preliminary]	800 GeV – Ĝ mass	C			
Simplified model : 0-lep + b-jets + E _{T,miss}	L=0.83 fb ⁻¹ (2011) [ATLAS-CONF-2011-098]	720 GeV g̃ mass (for <i>m</i> (b̃) < 600 GeV)	$Ldt = (0.031 - 1.21) \text{ fb}^{-1}$			
Pheno-MSSM (light χ^0_{\star}) : 2-lep SS + $E_{\mathrm{T,miss}}$	L=35 pb ⁻¹ (2010) (arXiv:1103.6214)	690 GeV q̃ mass	J			
Pheno-MSSM (light $\overline{\chi}_{4}^{0}$) : 2-lep OS _{ec} + $E_{T,miss}$	L=35 pb ⁻¹ (2010) [arXiv:1103.6208]	558 GeV q̃ mass	$\sqrt{s} = 7 \text{ TeV}$			
GMSB (GGM) + Simpl. model : ΫΫ + Ε _{Tmiss}	L=36 pb ⁻¹ (2010) [arXiv:1107.0561]	580 GeV g̃ mass				
GMSB : stable ₹	L=37 pb $^{-1}$ (2010) [arXiv:1106.4495] 136 GeV $~~\widetilde{ au}$ Ma	ISS				
Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984]	562 GeV ĝ mass				
Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984]	294 Gev Ď mass				
Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984]	309 GeV t̃ mass				
RPV (λ_{311}^{*} =0.01, λ_{312} =0.01) : high-mass e μ	L=0.87 fb ⁻¹ (2011) [preliminary]	440 GeV V RASS				
Large ED (ADD) : monojet	L=1.00 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 TeV M _O (ð	δ=2)			
UED : $\gamma\gamma + E_{Trainer}$	L=36 pb ⁻¹ (2010) [arXiv:1107.0561]	981 Gev Compact. scale 1/R				
RS with $k/M_{\rm Pl} = 0.1 : m_{\rm yy}$	L=36 pb ⁻¹ (2010) [ATLAS-CONF-2011-044]	920 Gev Graviton mass				
RS with $k/M_{\rm Pl} = 0.1 : m_{\rm eelow}$	L=1.08-1.21 fb ⁻¹ (2011) [preliminary]	1.63 TeV Graviton mass				
RS with top couplings $g_1 = 1.0, g_2 = 4.0 : m_2$	L=200 pb ⁻¹ (2011) [ATLAS-CONF-2011-087]	650 Gev KK gluon mass				
Quantum black hole (QBH) : $\tilde{m}_{\text{dijet}}, F(\chi)$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864]	3.67 TeV M.	, (δ=6)			
QBH : High-mass σ_{t+v}	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070]	2.35 TeV M _O				
ADD BH (M_{th}/M_p =3) : multijet $\Sigma p_{,}$, N_{iets}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 TeV M _D (δ=6)				
ADD BH $(M_{tt}/M_{D}=3)$: SS dimuon N_{ch} part	L=31 pb ⁻¹ (2010) [ATLAS-CONF-2011-065]	1.20 TeV M _O (δ=6)				
qqqq contact interaction : $F_{\chi}(m_{dilet})$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864 (Bayesian limit)]		6.7 TeV A			
qqμμ contact interaction : m	L=42 pb ⁻¹ (2010) [arXiv:1104.4398]	4.9 TeV	Λ			
SSM : m _{eefe}	L=1.08-1.21 fb ⁻¹ (2011) [preliminary]	1.83 TeV Z' mass				
SSM : m _{Tel}	L=1.04 fb ⁻¹ (2011) [preliminary]	2.15 TeV W' mass				
Scalar LQ pairs (β=1) : kin. vars. in eeii. evii	L=35 pb ⁻¹ (2010) [arXiv:1104.4481]	⊐76 Gev 1 st gen. LQ mass				
Scalar LQ pairs (β =1) : kin. vars. in uuii, uvii	L=35 pb ⁻¹ (2010) [arXiv:1104.4481]	422 Gev 2 nd gen. LQ mass				
4 th family : coll. mass in Q $\overline{Q} \rightarrow WaWa$	L=37 pb ⁻¹ (2010) [ATLAS-CONF-2011-022]	270 GeV Q ₄ mass				
4 th family : d \overline{d} \rightarrow WtWt (SS dilepton)	L=34 pb ⁻¹ (2010) [preliminary]	280 GeV d, mass				
Major. neutr. (V 4 form, A=1 TeV) : SS dilepton	L=34 pb ⁻¹ (2010) [preliminary]	480 GeV N mass				
Excited quarks : m	L=0.81 fb-1 (2011) [ATLAS-CONF-2011-095]	2.91 TeV	s			
Axigluons : mailer	L=0.81 fb ⁻¹ (2011) [ATLAS-CONF-2011-095]	3.21 TeV Axioli	Jon mass			
Color octet scalar ; m	L=0.81 fb ⁻¹ (2011) [ATLAS-CONF-2011-095]	1.et tev Scalar resonar	nce mass			
anjet						
	10 ⁻¹	1	10			

Mass scale [TeV]

Other

*Only a selection of the available results shown

LHC Higgs results will be discussed by Bill Murray on Wednesday afternoon

Here I show just a few Higgs highlights from ATLAS data

ATLAS has results with >1 fb⁻¹ on:

- $H \rightarrow \gamma \gamma$
- $H \rightarrow ZZ^{(*)} \rightarrow \ell \ell \ell \ell$
- $H \rightarrow ZZ \rightarrow \ell\ell vv$
- $H \rightarrow ZZ \rightarrow \ell \ell q q$
- $H \rightarrow WW^{(*)} \rightarrow \ell \overline{\nu \ell \nu}$
- $H \rightarrow WW \rightarrow \ell v q q$
- WH \rightarrow ℓ vbb
- $ZH \rightarrow \ell\ell bb$
- Combined limits

Cut-based analyses preferred at this stage All Higgs results shown use cut-based techniques

see also M Kado, K Nikolopoulos, J Strandberg, R Goncalo, K Cranmer parallel talks, X Ruan, P Conde Muino posters

35

$\mathsf{H}\to \mathsf{Y}\mathsf{Y}$

Mass resolution σ for 120 GeV H is ~1.7 GeV (2010 calibration)

 $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

Excellent mass resolution and signal/background

Low product branching ratio

Useful below ZZ threshold

- Leptons 3 and 4 down to 7 GeV
- Low and high-mass selections - divide at 180 GeV

ATLAS EXPERIMENT

Run Number: 183081, Event Number: 10108572 Date: 2011-06-05 17:08:03 CEST

A ZZ* \rightarrow 4µ candidate

 $m_{Z,1} = 90.6 \text{ GeV}, m_{Z^*,2} = 47.4 \text{ GeV}, m_{4\mu} = 143.5 \text{ GeV}$ 38

$H \to ZZ \to \ell \ell v v$

Powerful channel at high mass (BR vs S:B)

Select $Z \rightarrow \ell \ell$, angle cuts, veto b-jets, require high E_t^{miss}

95% C.L. limit on σ/σ_{SM}

Single channel high mass SM Higgs exclusion

$H \rightarrow WW \rightarrow \ell \nu \ell \nu$

Two isolated high- p_{T} leptons

- Cuts to suppress Drell-Yan background
- Significant E_{T}^{miss}
- Use expectation for scalar H: leptons not well separated
- Divide into 0 and 1-jet categories
- Slice transverse mass distribution: 0.75m_H < m_T < m_H

Selected events for m _H =150 GeV mass hypothesis							
0-iet	total bkgd	data	signal expectn				
ee	4.7±1.2	7	3.1±0.7				
еµ	17±2	21	11±2				
μμ	11±3	21	6.9±0.5				
łł	33±5	49	21±4				
1-jet							
ee	2.0±1.2	4	0.9±0.3				
eµ	8.8±1.9	8	4.0±0.9				
μμ	3.9±1.7	9	2.3±0.5				
૧૧	15±3	21	7.2±1.6				

Comparing Constraints

All analysed channels

Combined Constraints

Combining all analysed channels

ATLAS excludes 155 < m_H < 190 GeV and 295 < m_H < 450 GeV at 95% CL LHC provides first direct exclusion above 200 GeV, and helps widen the excluded range below 200 GeV

The Low Mass Region Is there more to say yet?

Limit on σ/σ_{SM} from data is generally rather poorer than median expectation if no Higgs Is it a fluctuation, or a background, or something else?

The Low Mass Region Consistency with background-only hypothesis

Least consistent point has a p-value corresponding to ~2.8 But the look-elsewhere effect can be large The LHC and ATLAS are working very well Many many thanks to our LHC colleagues for the superb performance of the collider

An abundance of important measurements now available at $\int s = 7 \text{ TeV}$

Now pushing deep into unexplored regions of phasespace with both simple and complex search topologies Major increase in sensitivity with 1 fb⁻¹ of 2011 data

As yet, no significant/conclusive evidence of Higgs production: ATLAS excludes, at 95% CL, production of a Standard Model Higgs boson over 155-190 GeV and 295-450 GeV

https://twiki.cern.ch/twiki/bin/view/AtlasPublic