International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alpes France July 21-27 2011

Legacy limits and hints of New Physics at the Tevatron

selection of results from the CDF and the DØ Collaborations

European Physical Society

HEP 201

Arnaud Duperrin

Centre de Physique des Particules de Marseille

- <u>New results for today include</u> <u>final states with:</u>
 - dilepton
 - diboson
 - t-tbar
 - + more exotic final states

What are we looking for ?

The Tevatron

The Detectors

Silicon Tracking, |η|<3 Scintillating Fiber Tracker 1.9 T B Field, |η|<2 LAr/U Calorimeter, |η|<2.5 Jet Energy Scale 1-2% μ Drift/Scintillator Counters, |η|<2

Silicon Tracking, |η|<2.5 Open Drift Cell Tracker 1.4 T B Field, |η|<1.1 Pb/Cu/Scint Calorimeter, |η|<3.2 Jet Energy Scale 2-3% μ Drift/Scintillator Counters, |η|<1.4

The data and the modeling

(differs from one analysis to another but this is a fair summary of what we are doing)

Arnaud Duperrin - CPPM - Marseille

+ Other hints of new physics

Arnaud Duperrin - CPPM - Marseille

Extra Dimension

 ✓ Example: 5 dimensional warped geometry as in Randall and Sundrum model

✓ 2 experimental parameters:

- First exited graviton mass
- k/M_{PL} : coupling of the graviton to SM fields

Randall-Sundrum Gravitons $\rightarrow \mu\mu$ (+ee+ $\gamma\gamma$)

✓ Both CDF and DØ combine the ee and $\gamma\gamma$ searches \checkmark CDF adds the $\mu\mu$ final state

 \checkmark New: inclusion of $\mu\mu$ in the ee+ $\gamma\gamma$ RS search (results in a 33% increase in the rate of potentially produced signal).

Diboson Final States

Arnaud Duperrin - CPPM - Marseille

✓ W+jj, W→ $ev/\mu v$

7.3 fb⁻¹

200

100

Events/(8 GeV/c²)

M_{ii} [GeV/c²]

CDF: a bump in W+jets data

Bkg Sub Data (7.3 fb⁻¹)

WW+WZ (all bkg syst.)

u/a

Gaussian

 $\overline{d}/\overline{u}$

200

PRL 106, 171801 (2011)

 ✓ In the Ivjj final state, CDF has reported an excess of events in the dijet mass spectrum around M_{ii}=150 GeV.

7.3 fb⁻¹ analysis is at: http://www-

 ✓ Significance of excess now exceeds 4σ.
 ✓ σ(WX) ~ 4 pb
 ✓ ± 2 pb (larges uncertainties).
 ✓ no theory on the market supports 4 pb.

> See also ATLAS report on Thu. 21/7 ATLAS-CONF-2011-097

✓ The CDF analysis did not apply corrections to ALPGEN modeling
 ⇒ to parallel the CDF analysis, DØ performs the analysis <u>without</u> these corrections.
 ✓ CDF/DØ includes uncertainties on the modeling of these variables.

<u>Ex for DØ :</u>

ALPGEN η and $\Delta R(jet1, jet2)$ corrections ALPGEN $W p_T$ correction Re-weighting Diboson bias Renormalization and factorization scales ALPGEN parton-jet matching parameters

+ assigns uncertainties on ALPGEN parameters (parton-jet matching, parton shower model, renormalization/factorization scale), PDF etc..

✓ To show that these corrections would not alter the conclusion \Rightarrow DØ also present results with/without these corrections.

WITHOUT nematic corrections to the simulation

✓ To show that these corrections would not alter the conclusion \Rightarrow DØ also present results with/without these corrections.

WITH kinematic corrections to the simulation

✓ To show that these corrections would not alter the conclusion \Rightarrow DØ also present results with/without these corrections.

WITH kinematic corrections to the simulation

Leptoquarks

in the electron + missing energy + jets final state

✓ M_{LQ} < 326 GeV for β=0.5
 ✓ Tevatron's 5.4 fb⁻¹ set still slightly more stringent limits than LHC for β<0.35

 ✓ connecting the quarks and leptons is predicted by many extensions of the SM (SUSY, GUTs, string theory...)

Top anti-Top Final States

✓ 4th family

With appropriate mass differences: 4th fermion model consistent with EW data

CKM 4x4 \Rightarrow New source of CPV

W. S. Hou, arXiv:0803.1234 "Source of CP Violation For Baryon Asymmetry of the Universe,"

Arnaud Duperrin - CPPM - Marseille

No stone left unturned ?

What about supersymmetry ?

What about supersymmetry ?

Supersymmetry Long Lived

✓ several models predict long-lived particles:

- charged or neutral
- big bang nucleosynthesis decaying inside or outside detector

Scenario covered today

The Long-Lived Galápagos Tortoise particles (LLGTs) also called the Charged massive long-lived particles (CMLLPs)

Can have implications on

Supersymmetry Long Lived

✓ Signal is like a heavy muon: p_T >60 GeV, β < 1, M_T > 200 GeV.

✓ Experimental characteristics:

- β: slow speed (measured by muon scintillator counters).
- high dE/dx (measured by silicon detector).

✓ Background is mostly W→ $\mu\nu$: model defined as β > 1 and M_T < 200 GeV.

Limits on: ✓ GMSB ✓ AMSB ✓ stop

Exclude higgsino-like
 (gaugino-like) charginos
 with m<230 (251) GeV.

No stone left unturned ?

Search for New Physics in ZZ+MET

✓ Signal has peaks in both M_{\parallel} and M_{\parallel} :

$$\sqrt{\left(\frac{M_{ll}-91.6}{10}\right)^2 + \left(\frac{M_{jj}-85.3}{15}\right)^2}$$

Set limits on cross-section $\lesssim 300 \text{ fb}$

Same sign dilepton

CDF public note 10464

- ✓ Predicted in supersymmetry , heavy neutrinos , same-sign top quark, fourth-generation quarks, doubly-charged scalars...
- ✓ Very low background from Standard Model.
- \checkmark e or μ with p_{t1}> 20 GeV and p_{t2}>10 GeV.
- ✓ Dominant background from "fake"-isolated lepton from HF semileptonic decays (obtained from data).

dilepton invariant mass $m_{\ell\ell}$

Consistent with SM

Any other hints of new physics?

Top anti-Top asymmetry

✓ axigluons, diquarks, new weak bosons, EDs etc..

 \checkmark Or gluon radiations modeling at NLO?

✓ See Frederic Deliot's talk today!

new t-tbar asymmetry result

5.1 fb⁻¹

Conclusion

✓ Huge number of signatures explored at the Tevatron.
 ✓ Up to 9 fb⁻¹ of data analyzed so far.

- ✓ Few hints are being followed up on with the full dataset (11 fb⁻¹).
 ✓ Our goal ⇒ leave no stone unturned
- ✓ We are in a new era of large data samples both at the Tevatron and the LHC.

Process		Lumi	signif.	Mass
ZZ→4 leptons	CDF	6.0 fb ⁻¹	3σ>	325 GeV
t'→qW	DØ	5.3 fb ⁻¹	2.5 σ	325 GeV
W+jj	CDF	7.3 fb ⁻¹	4.1σ	150 GeV
bbb	CDF	2.6 fb ⁻¹	2.8 \sigma	150 GeV
dimuon Asym.	DØ	9.0 fb ⁻¹	3.9 \sigma	
$B^0_s \rightarrow \mu^+ \mu^-$	CDF	7.0 fb ⁻¹	3 σ<	
t-tbar Asym.	CDF	5.1 fb ⁻¹	3.4 σ	

✓ Full set of results available at:
 CDF: <u>http://www-cdf.fnal.gov/physics/exotic/</u>
 DØ : <u>http://www-d0.fnal.gov/</u>

✓ We are living very special moment of particle physics!

Thanks for your attention!

and thanks to everyone in CDF, DØ, Tevatron and computing divisions, and our funding agencies for making all of this possible!

Thanks also to the Local Organizing Committee of EPS-HEP2011

<u>Special thanks to CDF/DØ exotics/NP conveners</u>: Mike Eads (DØ), Oscar Gonzalez (CDF), Michel Jaffré (DØ)

BACKUP

Perhaps no bump in the W+jets data

4.3 fb⁻¹

$ZZ \rightarrow 4$ leptons

For fun...

Dilepton Final States

✓ Have historically been a source of major discoveries
 ✓ Most models predicts such high-mass states

Randall-Sundrum Gravitons $\rightarrow ee + \gamma \gamma$

arXiv:1103.4650 (2011)

914

963

859

Arnaud Duperrin - CPPM - Marseille

1111

1058

491

300-754

Randall-Sundrum Gravitons → dibosons

 ✓ graviton decays to photons, leptons, and light jets can be suppressed, and dibosons become a discovery channel.

RS-G. k/M_{pl}=0.1 <u>ee γγ μμ ee+γγ μμ+ee+γγ</u> WW ZZ 914 963 859 1058 1111 300-754 600

Arnaud Duperrin - CPPM - Marseille

Vector Quarks \rightarrow Wq or Zq

Signature-based searches i.e. are observations consistent with SM expectation?

✓ These global analyses have revealed
 ✓ no new physics in 1-2 fb⁻¹

$W+\gamma+b-jets+MET$

The probability, assuming no true t-tbar- γ Standard Model (SM) signal, for the background alone to produce at least as many events (30) as observed in data, is 0.03% (2.7 σ).

γ+Jets+MET

CDF public note 10355

✓ signature possible in GMSB susy models ($\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$).

 ✓ prompt γ production, prompt γγ production, electroweak production of charged leptons that fake a prompt photon ⇒ PYTHIA
 ✓ QCD ⇒ data

in agreement with the Standard Model expectation

Multijet resonances (+bbb) Fabrice Couderc

t-tbar asymmetry

✓ The SM predicts small (6%) charge asymmetry between top and anti-top

 Δy_{t} (M_{...} > 450 GeV) **CDF II Preliminary** Events 15 L dt = 5.1 fb — Data 🔲 tť ± 1σ error 10 _Z→ττ WW/WZ/ZZ 5 -1 n Δy_t^{lab}

CDF public note 10436

 $A_{fb} = 0.42 \pm (0.15)^{stat} \pm (0.05)^{syst}$ (dilepton final state)

- \checkmark 2.3 σ from the SM prediction ✓ M₊₊>450 GeV:
 - 63 events in the positive side.
 - 41 events in the negative side.
- \checkmark 3.4 σ in the l+jets topology

✓ Numerous recent theoretical papers suggest interesting new physics mechanisms including axigluons, diquarks, new weak bosons, EDs etc..

57

A bump in W+jets data: what is it ?

 \checkmark How about a Z' again ?

 \checkmark Z'-fermion-fermion couplings as a free parameter \Rightarrow opens a wide range of Z' masses. ✓ A leptophobic Z' is constrain at both lepton and hadron colliders ($M_{z'}$ <300 GeV \Rightarrow overwhelming multijet background at Tevatron).

Phys. Rev. D 83, 115013 (2011)

	$M_{Z'}$	$g_{qqZ'}$	$g_{bbZ'}$	$g_{utZ'}$ •	W+jets CDF bumps paper has ~70 citations
$W^{\pm} + jj$	$140 - 150 {\rm GeV}$	0.1-0.3			\Rightarrow there are many other phenomenological
multi-b	$130160~\mathrm{GeV}$	$\ll 1$	0.7 - 0.9		explanations!
$t\bar{t}$ asymmetry	$120280~\mathrm{GeV}$			0.3–0.8 ●	Z' is just one (popular) example
atthem D. Duchler	1 Den Hernen ^{1,2}	Leeshing Ve		L N:13 (S	see also Hewett and Rizzo, arXiv: 1106.0294v2)

Matthew R. Buckley,¹, Dan Hooper^{1,2}, Joachim Kopp³, and Ethan Neil³

✓ The three anomalies (3b, t-tbar asymmetry, W+jj) can be simultaneously explained by a Z' with an approximate mass of 140-150 GeV (and could have important implications for dark matter phenomenology).

Dimuon Asymmetry

arXiv:1106.6308v1

9 fb⁻¹

 ✓ See Diego Tonelli's plenary talk on Wednesday (also discussed by Guennadi Borissov in the Flavor Physics session last week) ✓ DØ just released an updated measurement of the anomalous likesign dimuon charge asymmetry A^b_{sl} for semileptonic neutral B decays

 $A_{\rm sl}^b = (-0.787 \pm 0.172 \text{ (stat)} \pm 0.093 \text{ (syst)})\%$

- ✓ 3.9σ from SM \Rightarrow evidence for anomalously large CP violation
- The dependence of the asymmetry on the muon impact parameter is consistent with the hypothesis that it originates from semileptonic b-hadron decays

Thomas Kuhr arXiv:1107.2304

✓ CDF just released a search based on $B^0_{s} \rightarrow \mu^+ \mu^-$ and $B^0_{d} \rightarrow \mu^+ \mu^-$

✓ In SM, tiny BR~3.2 10^{-9} (and 25 times smaller for B_d) ✓ But in SUSY, enhancement ~(tan β)⁶ factor

✓ blind analysis using signal MC and side band data ✓ Normalize to the B⁺→J/ψ K⁺ mode ✓ Use a Likelihood ratio to discriminate

 $B^{0} \rightarrow \mu^{+}\mu^{-}$

 Use a Likelihood ratio to discriminate from huge μμ background using:

Thomas Kuhr

arXiv:1107.2304

- Secondary vertex displacement
- B pointing angle to Primary Vertex
- B isolation,...

✓ Look inside a mass window

✓ Excess of
$$B_s^0$$
 (~less than 3 σ)
 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$
 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.0 \times 10^{-8}$ at 95%

✓ See Diego Tonelli's plenary talk on Wednesday