Supersymmetry with Trilinear R-Parity Violation at the LHC

N.-E. Bomark1 \quad D. Choudhury2 \quad S. Lola3 \quad P. Osland1

1University of Bergen, Norway
2University of Delhi, India
3University of Patras, Greece

July 23, 2011/ EPS-HEP, Grenoble
What do we want the LHC to Discover?

- Officially: the Higgs
- ATLAS — “A Tool for Locating Any Supersymmetry”
- E.g. R-Parity Violating SUSY
What do we want the LHC to Discover?

- Officially: the Higgs
- ATLAS — “A Tool for Locating Any Supersymmetry”
- E.g. R-Parity Violating SUSY
What do we want the LHC to Discover?

- Officially: the Higgs
- ATLAS — “A Tool for Locating Any Supersymmetry”
- E.g. R-Parity Violating SUSY
B and L Violating Couplings.

\[\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \mu_i H L_i \]

\(L_i, Q_i, H \) – lepton, quark, Higgs doublets
\(E_i, D_i, U_i \) – lepton, down, up quark singlets
B and L Violating Couplings.

\[\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \mu_i H L_i \]

\(L_i, Q_i, H \) – lepton, quark, Higgs doublets
\(E_i, D_i, U_i \) – lepton, down, up quark singlets

Bilinear Lepton number violating couplings; induces neutrino–neutralino mixing. Not our primary focus
B and L Violating Couplings.

\[\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \mu_i H L_i \]

L_i, Q_i, H – lepton, quark, Higgs doublets
E_i, D_i, U_i – lepton, down, up quark singlets

Trilinear Lepton number violating couplings
B and L Violating Couplings.

\[
\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \mu_i H L_i
\]

L_i, Q_i, H – lepton, quark, Higgs doublets
E_i, D_i, U_i – lepton, down, up quark singlets

Trilinear Lepton number violating couplings

Trilinear Baryon number violating couplings
The Studied Scenario

- Neutralino NLSP
- (Gravitino LSP – for Dark Matter)
- Pair production of squarks and gluinos
- Cascade decay down to neutralino
- Three-body decay of neutralino
- Try to determine operator hierarchies
The Studied Scenario

- Neutralino NLSP
- (Gravitino LSP – for Dark Matter)
- Pair production of squarks and gluinos
- Cascade decay down to neutralino
- Three-body decay of neutralino
- Try to determine operator hierarchies

\[\tilde{q}, \tilde{g} \rightarrow \chi_1^0 \]
The Studied Scenario

- Neutralino NLSP
- (Gravitino LSP – for Dark Matter)
- Pair production of squarks and gluinos
- Cascade decay down to neutralino
- Three-body decay of neutralino
- Try to determine operator hierarchies

\[
\tilde{q}, \tilde{g} \rightarrow \chi_0^1
\]
Lots of leptons ⇒ easy background suppression
Neutrinos ⇒ no peaks or clear edges in Invariant mass distributions
Need to know the expected distributions!
LL̅E

- Lots of leptons \Rightarrow easy background suppression
- Neutrinos \Rightarrow no peaks or clear edges in Invariant mass distributions
- Need to know the expected distributions!
Lots of leptons \Rightarrow easy background suppression

Neutrinos \Rightarrow no peaks or clear edges in Invariant mass distributions

Need to know the expected distributions!
Theoretical Invariant Mass Distributions
Theoretical Invariant Mass Distributions

![Graph showing invariant mass distributions](image)
Invariant Mass Distributions

N.-E. Bomark, D. Choudhury, S. Lola, P. Osland

Supersymmetry with Trilinear R-Parity Violation at the LHC
Invariant Mass Distributions

N.-E. Bomark, D. Choudhury, S. Lola, P. Osland

Supersymmetry with Trilinear R-Parity Violation at the LHC
Neutralino \rightarrow lepton + 2 jets, neutrino + 2 jets

- $L_{1,2}Q_{1,2}ar{D}_3 \Rightarrow$ lepton + b-jet + light jet
- taus \Rightarrow loss of information (momentum) through neutrinos
- $Q_3 \Rightarrow$ only neutrino + 2 jets (at least one b-jet)
Neutralino \rightarrow lepton + 2 jets, neutrino + 2 jets

- $L_{1,2}Q_{1,2}\bar{D}_3 \Rightarrow$ lepton + b-jet + light jet
- taus \Rightarrow loss of information (momentum) through neutrinos
- $Q_3 \Rightarrow$ only neutrino + 2 jets (at least one b-jet)
Neutralino \rightarrow lepton + 2 jets, neutrino + 2 jets

- $L_{1,2}Q_{1,2}\bar{D}_3 \Rightarrow$ lepton + b-jet + light jet
- taus \Rightarrow loss of information (momentum) through neutrinos
- $Q_3 \Rightarrow$ only neutrino + 2 jets (at least one b-jet)
Neutralino \rightarrow lepton + 2 jets, neutrino + 2 jets

- $L_{1,2}Q_{1,2}\bar{D}_3 \Rightarrow$ lepton + b-jet + light jet
- taus \Rightarrow loss of information (momentum) through neutrinos
- $Q_3 \Rightarrow$ only neutrino + 2 jets (at least one b-jet)
$LQ\bar{D}$

Neutralino \rightarrow lepton + 2 jets, neutrino + 2 jets

- $L_{1,2}Q_{1,2}\bar{D}_3 \Rightarrow$ lepton + b-jet + light jet
- taus \Rightarrow loss of information (momentum) through neutrinos
- $Q_3 \Rightarrow$ only neutrino + 2 jets (at least one b-jet)

Need to suppress $t\bar{t}$ background; require 2 Same-sign leptons.
Invariant Masses – $L_1 Q_1 \bar{D}_2$: electron - 2 jets

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Invariant_Masses.png}
\end{figure}
Invariant Masses – $L_1 Q_1 \bar{D}_3$: electron - b-jet - jet
Invariant Masses – $L_3 Q_1 D_3$: tau-jet - b-jet

N.-E. Bomark, D. Choudhury, S. Lola, P. Osland

Supersymmetry with Trilinear R-Parity Violation at the LHC
Difficult! : $\chi_1^0 \rightarrow 3$ jets

Exception: $\bar{U}_3 \Rightarrow \begin{cases} M_{\chi_1^0} < M_{\text{top}} & \Rightarrow \chi_1^0 \text{ escapes} \\ M_{\chi_1^0} > M_{\text{top}} & \Rightarrow \chi_1^0 \rightarrow t(\bar{t}) + 2 \text{ (soft) jets} \end{cases}$

$\chi_1^0 \rightarrow t(\bar{t}) + 2j \Rightarrow tt$ and \bar{tt} events $\Rightarrow 2$ same-sign leptons
Difficult! : $\chi_1^0 \rightarrow 3$ jets

Exception: $\bar{U}_3 \Rightarrow \begin{cases} M_{\chi_1^0} < M_{top} & \rightarrow \chi_1^0 \text{ escapes} \\ M_{\chi_1^0} > M_{top} & \Rightarrow \chi_1^0 \rightarrow t(\bar{t}) + 2 \text{ (soft) jets} \end{cases}$

$\chi_1^0 \rightarrow t(\bar{t}) + 2j \Rightarrow tt$ and $\bar{t}\bar{t}$ events \Rightarrow 2 same-sign leptons

Difficult! : $\chi_1^0 \rightarrow 3\text{ jets}$

Exception: $\bar{U}_3 \Rightarrow \begin{cases} M_{\chi_1^0} < M_{\text{top}} & \Rightarrow \chi_1^0 \text{ escapes} \\ M_{\chi_1^0} > M_{\text{top}} & \Rightarrow \chi_1^0 \rightarrow t(\bar{t}) + 2\text{ (soft) jets} \end{cases}$

$\chi_1^0 \rightarrow t(\bar{t}) + 2j \Rightarrow tt\text{ and } \bar{t}\bar{t}\text{ events} \Rightarrow 2\text{ same-sign leptons}$
What can we identify?

<table>
<thead>
<tr>
<th>coupling</th>
<th>identifiable</th>
<th>remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLE</td>
<td>✓</td>
<td>For all flavours</td>
</tr>
<tr>
<td>$L_{1,2}Q\bar{D}$</td>
<td>✓</td>
<td>Cannot identify light quark flavors</td>
</tr>
<tr>
<td>$L_3Q\bar{D}$</td>
<td>?</td>
<td>More difficult with τ</td>
</tr>
<tr>
<td>$LQ\bar{D}_3$</td>
<td>✓</td>
<td>Better identification with b-jet</td>
</tr>
<tr>
<td>$LQ_3\bar{D}$</td>
<td>?</td>
<td>No charged lepton</td>
</tr>
<tr>
<td>$\bar{U}_{1,2}\bar{D}\bar{D}$</td>
<td>✓</td>
<td>But difficult</td>
</tr>
<tr>
<td>$\bar{U}_3\bar{D}\bar{D}$</td>
<td>✓ (?)</td>
<td>Only if $M_{\chi_1^0} > M_{top}$</td>
</tr>
</tbody>
</table>
Conclusions

- Three-body decays of the neutralino allows us to study all 45 trilinear R-Parity violating operators simultaneously and to measure flavour hierarchies.
- Most operators can be successfully detected and the neutralino mass can be measured.
- Difficult cases include $L_3 Q \bar{D}$, $LQ_3 \bar{D}$ and some cases with $\bar{U}D\bar{D}$.
- The prospects for determining the full hierarchy of RPV couplings are good.
Conclusions

- Three-body decays of the neutralino allows us to study all 45 trilinear R-Parity violating operators simultaneously and to measure flavour hierarchies.
- Most operators can be successfully detected and the neutralino mass can be measured.
- Difficult cases include $L_3 Q \bar{D}$, $L Q_3 \bar{D}$ and some cases with $\bar{U} \bar{D} \bar{D}$.
- The prospects for determining the full hierarchy of RPV couplings are good.
Conclusions

- Three-body decays of the neutralino allows us to study all 45 trilinear R-Parity violating operators simultaneously and to measure flavour hierarchies.
- Most operators can be successfully detected and the neutralino mass can be measured.
- Difficult cases include $L_3 Q \bar{D}$, $LQ_3 \bar{D}$ and some cases with $\bar{U} \bar{D} \bar{D}$.
- The prospects for determining the full hierarchy of RPV couplings are good.
Conclusions

- Three-body decays of the neutralino allows us to study all 45 trilinear R-Parity violating operators simultaneously and to measure flavour hierarchies.
- Most operators can be successfully detected and the neutralino mass can be measured.
- Difficult cases include $L_3 Q \bar{D}$, $LQ_3 \bar{D}$ and some cases with $\bar{U} \bar{D} \bar{D}$.
- The prospects for determining the full hierarchy of RPV couplings are good.