

Searches for Supersymmetry in All-Hadronic Final States with CMS

Christian Autermann, Universität Hamburg on behalf of the CMS collaboration

EPS-HEP 2011, Grenoble, July 23th

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

UΗ

CMS

SUSY cross section is dominated by squark and gluino pair/associated production

- R-parity conservation
 - → pair/associated SUSY production
 - → Stable LSP
- Cascade decay of primary produced SUSY particles
- → **missing E**_T,
- → many jets,
- → possibly leptons

(dedicated analyses & talk).

- Data-driven estimation of all relevant Standard Model backgrounds in addition to MC simulation:
- Jets + Missing Transverse Energy, 36 pb⁻¹: Inclusive, least model-dependent
- "Razor", 36 pb⁻¹:

Variables related to SUSY mass-scale using hemisphere algorithm

• α_{T} Search, 1.1 fb⁻¹:

Effective suppression of QCD-multijet production

• Results & Sensitivity: using up to 1.1 fb⁻¹ of integrated luminosity

Emphasis on

CMS

E

• data-driven background modeling,

inclusive selection.

$$egin{aligned} \mathcal{H}_{\mathsf{T}} &= \sum_{i}^{\mathsf{jets}} \left| ec{p}_{\mathsf{T},i}
ight| \ \mathcal{H}_{\mathsf{T}} &= - \left| \sum_{i}^{\mathsf{jets}} ec{p}_{\mathsf{T},i}
ight| \end{aligned}$$

(Missing) **T**ransverse **H**adronic Energy

Search selections:

>= 3 jets pT > 50 GeV,
Jets not colinear with MHT

• MHT> 250 GeV or • MHT> 150 GeV

• HT > 300 GeV • HT > 500 GeV

Signal acceptance 20-30%

QCD estimation from data

H

CMS

Submitted to JHEP, arXiv:1106.4503

Gaussian jet resolution: (CMS JME-10-014) O.3 Jet b¹ Resolution 0.2 0.2 0.3 **CMS Preliminary 2010** lŋl < 1.1 $\sqrt{s} = 7 \text{ TeV}, L = 34 \text{ pb}^{-1}$ **DiJet Asymmetry** Photon+Jet 0.15 0.1 0.05 Anti-k₇ 0.5 PFJets 0 40 50 100 200 300 400 Transverse Momentum [GeV/c]

Closure: Method works better than 40%: 10° $\textbf{H}_{\textbf{T}} \geq \textbf{300}, \, \Delta \varphi_{12} \geq \textbf{0.5}, \, \Delta \varphi_{3} \geq \textbf{0.3}$ **10⁴** 10³

6

W / tt background: Lepton lost due to isolation or identification

Ш

CMS

Lepton is a hadronically decaying tau:

Z \rightarrow vv from γ -jets data:

Submitted to JHEP, arXiv:1106.4503

High stat (no branching ratio)

Calculation γ / Z ratio: Z. Bern et al., arXiv:1106.1423

Submitted to JHEP, arXiv:1106.4503

Event yields:

CMS

Ш

	Expected	Observed		Expected	Observed
MHT>250 GeV	18.8 ± 3.5	15	HT>500 GeV	43.8 ± 9.2	40

Interpretation in the CMSSM plane:

Overview: SUSY Searches in All-Hadronic Final States

8

Data-driven estimation of all relevant Standard Model backgrounds in addition to MC simulation:

- Jets + Missing Transverse Energy, 36 pb⁻¹: Inclusive, least model-dependent
- "Razor", 36 pb⁻¹:

UH

CMS

Variables related to SUSY mass-scale using hemisphere algorithm

• α_{-} Search, 1.1 fb⁻¹:

Effective suppression of QCD-multijet production

Results & Sensitivity: using up to 1.1 fb⁻¹ of integrated luminosity

Hemisphere algorithm to cluster events into an effective di-jet system

Define:

$$M_{\Delta} = rac{M_{ ilde{q}}^2 - M_{\chi^0}^2}{M_{ ilde{q}}}$$

As a measure for the mass-scale, estimator:

$$M_{\rm R} = 2\sqrt{\frac{(E_1 \cdot p_{z,2} - E_2 \cdot p_{z,1})^2}{(p_{z,1} - p_{z,2})^2 - (E_1 - E_2)^2}}$$

$$M_{\rm T}^{\rm R} = \sqrt{rac{{\it E}_{
m T}({\it p}_{{
m T},1}+{\it p}_{{
m T},2})-\vec{\it E}_{
m T}(\vec{\it p}_{{
m T},1}+\vec{\it p}_{{
m T},2})}{2}}$$

and the dimensionless ratio

$$R = {M_R \over M_T^R}$$
 is M_T^R C. Rogan, arXiv:1006.2727

For the QCD background $M_R = \sqrt{\hat{s}}$

is falls like a power law

Submitted to JHEP, arXiv:1107.1279

The "Razor" Search

10

QCD-data:

- M_R falls exponentially
- Slope depends linearly on R²

QCD prediction:

 Extrapolate to signal-region M_p > 500 GeV, R > 0.5 Events / 50 GeV

Submitted to JHEP, arXiv:1107.1279

Background modeling:

H

CMS

- Classify events as hadronic, muon or electron,
- Use shapes from lepton boxes
- Use QCD shape from di-jet data
- Fit in 80 < M_R < 400 GeV
- Extrapolate to high M_R

Event selection
>= 2 jets with pT>30 GeV

ΔΦ(hemispheres) < 2.8
 R > 0.5, M_R > 500 GeV

	Expected	Observed	
MR > 500 GeV	5.5 ± 1.4	7	

Results interpreted in the CMSSM plane

Submitted to JHEP, arXiv:1107.1279

Christian Autermann

Data-driven estimation of all relevant Standard Model backgrounds in addition to MC simulation:

- Jets + Missing Transverse Energy, 36pb⁻¹: Inclusive, least model-dependent
- "Razor", 36 pb⁻¹:

Variables related to SUSY mass-scale using hemisphere algorithm

• α_{T} Search, 1.1 fb⁻¹:

Effective suppression of QCD-multijet production

Results & Sensitivity: using up to 1.1 fb⁻¹ of integrated luminosity

Christian Autermann

CMS PAS SUS-2011-003

14

Recombine jets to two pseudo-jets, suppress QCD by α_{-} :

 $_{\bullet}$ $\alpha_{_{T}}$ uses jet momenta and angles

UΗ

CMS

• no direct use of missing transverse momentum (MET)

The α_{-} search

Exception: A third jet is completely lost.

The α_{+} search

15_

$$R_{\alpha_T} = \frac{\alpha_T > 0.55}{\alpha_T < 0.55}$$

EWK: real MET \leftrightarrow constant R

QCD: MET from jet-resolution $\leftrightarrow R_{\alpha T}$ Falling with HT since jet resolution improves with pT

The α_{-} search

16

CMS PAS SUS-2011-003

Results: Expected and observed event yields

- No excess observed in the data
- Calculated limits using the exclusive HT-bins as separate channels with correlated uncertainties

Data-driven estimation of all relevant Standard Model backgrounds in addition to MC simulation:

- Jets + Missing Transverse Energy, 36 pb⁻¹:
 Inclusive, least model-dependent
- "Razor", 36 pb⁻¹:

Variables related to SUSY mass-scale using hemisphere algorithm

• α_{-} Search, 1.1 fb⁻¹:

Effective suppression of QCD-multijet production

• Results & Sensitivity: using up to 1.1 fb⁻¹ of integrated luminosity

Results: 36 pb⁻¹ Integrated Luminosity

Ш

Π'n

CMSX

Results: Cross section limits for simplified models

UΗ

CMS

19

Also combined plots available on https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Results: 1.1 fb⁻¹ Integrated Luminosity

A candidate event...

21

MHT = 693 GeV HT = 1132 GeV M_{eff} = MHT+HT = 1.83 TeV No b-tagged jet No isolated lepton Incompatible with W or top mass

...compatible with $Z \rightarrow vv$

- No sign for Supersymmetry in the hadronic channel observed in up to 1.1 fb⁻¹ at CMS, yet.
- The results constrain the SUSY parameter space, e.g. exclude squark masses ≤ 1.1 TeV in CMSSM tan β =10, μ >0, A_0 =0
- Several complementary analyses in place
- The Standard Model background is measured directly from the data, reducing the uncertainties from simulation and theory
- CMS is prepared for discoveries!

The CMS detector

CMS mSUGRA benchmark points

CMS Physics TDR, Volume II: CERN-LHCC-2006-021, 25 June 2006