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Plan

ë QCD factorization for exclusive reactions

* Success in DVCS : See previous presentation, J. Bowles

→ GPD properties

ë On Timelike Compton scattering

→ NLO corrections

→ access in UPC at LHC

BP, L Szymanowski, J Wagner , Phys Rev D. 2009 and 2011

ë Backward meson electroproduction

→ from GPDs to TDAs

BP, K Semenov-Tian-Shansky, L Szymanowski, Phys Rev D. 2010 and 2011.



QCD factorization in Exclusive processes

DVCS Meson Production
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ë Factorisation between a hard part (perturbatively calculable) and a soft

part (non-perturbative) Generalized Parton Distribution demonstrated for

Q2 →∞, xB = Q2

Q2+W2 fixed and t� fixed

D. Muller et al. , Ji, Radyushkin, Collins et al. , ’94, ’96,’98
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Generalised Parton Distributions

Non-Local operators (as in DIS) and non diagonal matrix elements
= soft part of the amplitude for exclusive reactions
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GPD = Fourier Transform of matrix elements

〈N(p′, λ′)|ψ̄(−z/2)α[−z/2; z/2]ψ(z/2)β|N(p, λ)〉
∣∣∣∣
z+=0, zT=0

ON THE LIGHT CONE z2 = 0

p′ − p = ∆ ∆2 = t ∆+ = −ξ(p+ p′)+ x− x′ = 2ξ
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Energy flow in GPDs

Three different regionsM. Diehl / Physics Reports 388 (2003) 41–277 53
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Fig. 5. The parton interpretation of GPDs in the three x-intervals [− 1;−!], [− !; !], and [!; 1].

with an analogous expression for H̃ q and Ẽq, where n− can be any light-like vector. The GPDs are
allowed to depend on x and on Lorentz invariant products of the vectors p, p′ and n−, which one
may choose as "n−, Pn− and t. Under a boost along the z axis the light-cone vectors n− and n+
transform as

n− → #n−; n+ → #−1n+ ; (16)

and we readily see from (15) that the GPDs are independent under such a boost. Therefore they
depend on "n− and Pn− only via the ratio !=−("n−)=(2Pn−). In other words they depend only
on plus-momentum fractions, but not on individual plus-momenta, which are rescaled under boosts.
The above de!nitions hold in the light-cone gauge A+ = 0 for the gluon !eld. In other gauges a

Wilson line W [− 1
2 z

−; 12 z
−] along a light-like path appears between the two !elds at positions − 1

2 z
and 1

2 z, where

W [a; b] = P exp
(
ig

∫ a

b
dx− A+(x−n−)

)
(17)

and P denotes ordering along the path from a to b. Most formulae and statements of this review
are readily generalized to this case, with exceptions we will indicate.
The distributions we have de!ned have support in the interval x∈ [ − 1; 1], which falls into the

three regions shown in Fig. 5:

(1) for x∈ [!; 1] both momentum fractions x + ! and x − ! are positive; the distribution describes
emission and reabsorption of a quark.

(2) for x∈ [−!; !] one has x+!¿ 0 but x−!6 0. The second momentum fraction is now interpreted
as belonging to an antiquark with momentum fraction !− x emitted from the initial proton.

(3) for x∈ [ − 1;−!] both x + ! and x − ! are negative; one has emission and reabsorption of
antiquarks with respective momentum fractions !− x and −!− x.

The !rst and third case are commonly referred to as DGLAP regions and the second as ERBL
region, following the pattern of evolution in the factorization scale (Section 3.8). Why the support
of GPDs is restricted to |x|6 1 will be discussed in Section 3.4.
The above interpretation can be made explicit in the framework of light-cone quantization. As

we will see in Section 3.4 one can then decompose the !eld operators "q and q in de!nitions (14)
in terms of annihilation and creation operators b; b† for quarks and d; d† for antiquarks [35,40,41].

antiquark content q̄q content quark content

Two different evolution equations

as q̄(−x,Q2) as Φπ(z,Q2) as q(x,Q2)

DGLAP ERBL DGLAP

→ δ(−x) → Φπ
as(z,Q

2) = 6zz̄ → δ(x)

B.Pire, CPhT, Polytechnique EPS-2011 04/26



Impact picture Representation

t dependence of GPDs maps transverse position bT of quarks.

Fourier transform GPD at zero skewedness

q(x, bT ) = (2π)−2 ∫ d2∆T e
i∆T .bTH(x, ξ = 0, t) probability

Generalize at ξ 6= 0→ Quantum femtophotography.

The t−dependence of dVCS localizes transversally

the q (DGLAP) or the q̄q pairs of size 1
Q (ERBL) in the proton

DGLAP region (x > ξ) ERBL region (x < ξ)
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This is the reason I consider GPDs as a

breakthrough in QCD physics

ë Beautiful progress in forward exclusive photon (DVCS) and meson

(DVMP) experiments and analysis

ë Need to test universality of GPDs : TCS vs DVCS extractions

ë Need to better understand NLO and twist 3 contributions ( → ρT )

see A. Besse POSTER session

ë Extend forward case (= GPDs : ψ̄ψ operators ) to backward

kinematics → TDAs : ψψψ operators



On spacelike vs timelike probe

γ∗(q)N(p)→ γ∗(q′)N ′(p′) DVCS vs TCS
676 E.R. Berger et al.: Timelike Compton scattering: exclusive photoproduction of lepton pairs
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Fig. 2. Handbag diagrams for the Compton process (1) in the
scaling limit. The plus-momentum fractions x, ξ, η refer to the
average proton momentum (1/2)(p + p′)

cuss the relevance of parton densities at very small x when
modeling generalized parton distributions with a double
distribution ansatz.

2 The Compton amplitude

Both DVCS and TCS are limiting cases of the general
Compton process

γ∗(q) + p(p) → γ∗(q′) + p(p′), (1)

where the four-momenta q and q′ of the photons can have
any virtuality. We will also use ∆ = p′ − p, the invariants

Q2 = −q2, Q′2 = q′2, s = (p + q)2, t = ∆2, (2)

and write M for the proton mass. In the region where
at least one of the virtualities is large, the amplitude is
given by the convolution of hard scattering coefficients,
calculable in perturbation theory, and generalized parton
distributions, which describe the nonperturbative physics
of the process. To leading order in αs one then has the
quark handbag diagrams of Fig. 2. The arguments for fac-
torization given in [4], based on the analysis of Feynman
graphs, hold both for large spacelike and for large time-
like virtualities [5]. We thus define the scaling limit as
|q2|+ |q′2| → ∞ at fixed t and fixed ratios q2/s and q′2/s.

For our subsequent discussion let us recall the expres-
sion of the hadronic tensor

Tαβ = i
∫

d4xe−iq·x〈p(p′)|TJα
em(x)Jβ

em(0)|p(p)〉, (3)

where eJα
em(x) is the electromagnetic current with e de-

noting the positron charge. In the scaling limit we have to
leading order in αs

Tαβ = − 1
(p + p′)+

ū(p′)
[
gαβ
T

(
H1γ

+ + E1
iσ+ρ∆ρ

2M

)

+ iεαβ
T

(
H̃1γ

+γ5 + Ẽ1
∆+γ5

2M

)]
u(p). (4)

This expression holds in reference frames where both pro-
ton momenta p and p′ have small transverse components
of order (−t)1/2 and are moving fast to the right, i.e., have
large plus-components. Light-cone coordinates are defined
as v± = (v0 ± v3)/21/2 for any four-vector v. The trans-
verse tensors gT and εT have as only nonzero components

−g11
T = −g22

T = ε12T = −ε21T = 1. Following the notation of
[6] we have introduced the convolutions

H1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
Hq(x, η, t)
ξ − x− iε

− Hq(x, η, t)
ξ + x− iε

)
,

E1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
Eq(x, η, t)
ξ − x− iε

− Eq(x, η, t)
ξ + x− iε

)
,

H̃1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
H̃q(x, η, t)
ξ − x− iε

+
H̃q(x, η, t)
ξ + x− iε

)
,

Ẽ1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
Ẽq(x, η, t)
ξ − x− iε

+
Ẽq(x, η, t)
ξ + x− iε

)

(5)

of the generalized quark distributions defined in [2], sum-
med over quarks of flavor q and electric charge eeq. The
scaling variables ξ and η are given by

ξ = − (q + q′)2

2(p + p′) · (q + q′)
≈ Q2 −Q′2

2s + Q2 −Q′2 ,

η = − (q − q′) · (q + q′)
(p + p′) · (q + q′)

≈ Q2 + Q′2

2s + Q2 −Q′2 , (6)

where the approximations hold in the kinematical limit
we are working in. x, ξ, and η represent plus-momentum
fractions

x =
(k + k′)+

(p + p′)+
, ξ ≈ − (q + q′)+

(p + p′)+
, η ≈ (p− p′)+

(p + p′)+
. (7)

The expressions (4) and (5) reveal that the two-photon
amplitude is independent of the photon virtualities at
fixed ξ, η and t. In the case of spacelike q = q′ this is just
Bjorken scaling. To be precise, the independence on q2 and
q′2 only holds up to logarithmic corrections: the photon
virtualities provide the hard scale of the process and thus
enter through the factorization scale dependence of the
parton distributions, which we have not displayed above.
The corresponding evolution equations are well known [1–
3,?], and as usual we will refer to −1 < x < −η and
η < x < 1 as the DGLAP regions, and to −η < x < η as
the ERBL region of the parton distributions.

Let us now recall the helicity structure of the two-
photon process in the scaling limit. Contracting the had-
ronic tensor with polarization vectors ε of the incoming
and ε′ of the outgoing photon, one obtains the helicity
amplitudes of (1) as

e2Mλ′µ′,λµ = e2εαTαβε′∗β , (8)

where λ (λ′) denotes the helicity of the incoming (outgo-
ing) proton and µ (µ′) the helicity of the incoming (out-
going) photon. Parity invariance provides the relations
M−λ′−µ′,−λ−µ = (−1)λ′−µ′−λ+µMλ′µ′,λµ. From (4) one
easily finds that the quark handbag diagrams only gener-
ate helicity conserving transitions between transverse pho-
tons, Mλ′+,λ+ and Mλ′−,λ−. At order αs one further has

spacelike q2 < 0 ; q′2 = 0 vs timelike q2 = 0 ; q′2 > 0

e N → e′ N γ vs γ N → N µ+ µ−

LO : ADV CS = A∗TCS

NLO : ADV CS 6= A∗TCS

crucial for factorization to hold. But in the NLO this
relation no longer holds. For the quark part, we have

Cq
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# $ Cq
1ðDVCSÞ
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To discuss this difference and present the magnitude of
corrections we define the following ratio:

Rq ¼
Cq
1 þ 1

2 logð
jQ2j
%2

F
Þ ( Cq

coll

Cq
0

(55)

of the NLO quark correction to the coefficient function, to
the Born level. In Fig. 7, we show for %2

F ¼ jQ2j the real
and imaginary parts of the ratio Rq in timelike and space-
like Compton scattering as a function of x in the ERBL
(left) and DGLAP (right) regions for # ¼ 0:3. We fix !s ¼
0:25 and restrict the plots to the positive x region, as the
coefficient functions are antisymmetric in that variable. We
see that in the TCS case, the imaginary part of the ampli-
tude is present in both the ERBL and DGLAP regions,
contrarily to the DVCS case, where it exists only in the
DGLAP region. The magnitude of these NLO coefficient
functions is not negligible. We see that the importance of
these NLO coefficient functions is magnified when we
consider the difference of the coefficient functions
Cq
1ðTCSÞ

# $ Cq
1ðDVCSÞ. The conclusion is that extracting the

universal GPDs from both the TCS and DVCS reactions
requires much care.

As is well known in inclusive reactions, one may choose
a renormalization scheme (named the DIS 7scheme [15])
defined by the fact that NLO corrections to some observ-
ables vanish. This of course does not preclude the impor-
tance of next-to-next-to-leading order corrections. In the
exclusive case, we thus may propose that NLO corrections
vanish in the DVCS amplitude. This DVCS factorization
scheme then transfers all NLO corrections calculated here
to the TCS coefficient functions, which become very siz-
able. We illustrate this fact by showing in Fig. 8 the ratio
Rq
T$S of the difference of NLO quark coefficient functions

to the LO coefficient function

Rq
T$S ¼

Cq
1ðTCSÞ $ Cq#

1ðDVCSÞ
Cq
0

: (56)

A final word is needed with respect to the presence of the
"2 terms in the difference of the NLO coefficient func-
tions. Quite a rich literature [15,16] exists on the impor-
tance of such factors in inclusive coefficient functions and
their relation to soft gluon exchange. One may verify that,
in the exclusive case that we study here, a soft gluon
approximation gives some of the "2 terms that one may
read from Eq. (54). One can suppose that these corrections
exponentiate when all order corrections are summed up. A
particular feature is worth pointing out: These "2 terms
exist only in the DGLAP regions. We confess that we do
not understand why this is the case.
Let us now briefly comment on the gluon coefficient

functions. As in the case of quark corrections, the collinear
parts are complex conjugated to each other:

Cg
collðDVCSÞ ¼ Cg

collðTCSÞ
#: (57)

Moreover, the real parts of the gluon contribution are equal
for the DVCS and TCS in the ERBL region. The differ-
ences between the TCS and DVCS emerge in the ERBL
region through the imaginary part of the coefficient func-
tion which is nonzero only for the TCS case and is of the

FIG. 8. Real (solid line) and imaginary (dashed line) parts of
the ratio Rq

T$S of the difference of NLO quark coefficient
functions to the LO coefficient functions in the TCS and
DVCS as a function of x in the DGLAP region for # ¼ 0:3.

FIG. 9. Ratio of the real (solid line) and imaginary (dashed
line) parts of the NLO gluon coefficient function in TCS to the
same quantity in DVCS as a function of x in the DGLAP region
for # ¼ 0:05 for %2

F ¼ jQ2j.
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ë Both timelike and spacelike data useful to check NLO analysis !
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GPDs at LHC (and RHIC)

ë Ultraperipheral Collisions : quasi real photons from proton beam

µ+µ− pair productionE.R. Berger et al.: Timelike Compton scattering: exclusive photoproduction of lepton pairs 679
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Fig. 5. Sketch of the kinematical variables and coordinate axes
in the γp and "+"− c.m. frames. Notice that the coordinate
systems differ from the one we used in the Compton amplitude
(4), where p and p′ have positive 3-components

=
Q′2(s−M2 −Q′2) + t(s−M2 + Q′2)

r
. (16)

The form of the second equation in (15) is useful in our
kinematics, where ∆T is small and σ = 1.

As polarization vectors ε(λ) for the incoming photon
we take ε(±) = (∓e(1)−ie(2))/21/2, where e(1) and e(2) are
unit vectors along the 1- and 2-directions in the γp c.m. as
shown in Fig. 5. Our polarizations ε′(λ′) of the outgoing
photon are ε′(±) = (∓e′(1) − ie′(2))/21/2 and ε′(0) = e′(3)

with unit vectors along the coordinate axes in the &+&−

c.m. described above.

4.2 The Bethe–Heitler contribution

The Bethe–Heitler amplitude is readily calculated from
the two Feynman diagrams in Fig. 6. We parameterize
the photon–proton vertex in terms of the usual Dirac and
Pauli form factors F1(t) and F2(t), normalizing F2(0) to
be the anomalous magnetic moment of the target. We find
for the BH contribution to the unpolarized γp cross sec-
tion

dσBH

dQ′2dtd(cos θ)dϕ
=

α3
em

4π(s−M2)2
β

−tL

×
[(

F 2
1 −

t

4M2
F 2

2

)
A

−t
+ (F1 + F2)2

B

2

]
, (17)

where we have used the abbreviations

A = (s−M2)2∆2
T − ta(a + b)

− M2b2 − t(4M2 − t)Q′2

+
m2

!

L

[
{(Q′2 − t)(a + b)− (s−M2)b}2

+ t(4M2 − t)(Q′2 − t)2
]
,

B = (Q′2 + t)2 + b2

+ 8m2
!Q

′2 − 4m2
!(t + 2m2

!)
L

(Q′2 − t)2. (18)

The cross section depends on the angles θ and ϕ through
the scalar products

a = 2(k − k′) · p′, b = 2(k − k′) · (p− p′) (19)

l+

l#

p p

$

Fig. 6. The Feynman diagrams for the Bethe–Heitler ampli-
tude

given in (15) above, and through the product of the lepton
propagators in the two BH diagrams,

L = [(q−k)2−m2
! ][(q−k′)2−m2

! ] =
(Q′2 − t)2 − b2

4
. (20)

These expressions are rather lengthy, but simplify con-
siderably in kinematics where t, M2 and m2

! can be ne-
glected compared to terms going with s or Q′2. We then
have

L ≈ L0 =
Q′4 sin2 θ

4
. (21)

and

dσBH

dQ′2dtd(cos θ)dϕ
≈ α3

em

2πs2

1
−t

1 + cos2 θ

sin2 θ

×
[(

F 2
1 −

t

4M2
F 2

2

)
2
τ2

∆2
T

−t
+ (F1 + F2)2

]
. (22)

We see that the product L of lepton propagators goes to
zero at sin θ = 0 in this approximation. Closer inspection
reveals that when sin θ becomes of order ∆T/Q′ or m!/Q′

the approximations (21) and (22) break down and one
must use the full expressions.

Let us see how small the product L can become. At
fixed s, Q′2, t, ϕ we find with (15) and (20) that L assumes
a minimum value,

Lmin ≈ Q′2m2
! + Q′2∆2

T

sin2 ϕ

(1− τ)2
, (23)

for

tan θmin ≈ −
2∆T

Q′
cos ϕ

1− τ
, (24)

up to corrections of order t/Q′2, M2/Q′2, m2
!/Q′2. For

θ ∼ θmin the leptons &− and &+ are nearly collinear with
the initial photon in the γp c.m. They have transverse
momenta of order ∆T with respect to -p and -q and share
their total longitudinal momentum in a highly asymmetric
way. In our numerical studies we will impose a cut on θ
which ensures that L remains of order Q′4, thus staying
away from the region where the BH cross section becomes
extremely large.

We finally remark that as long as L is of order Q′4 the
terms going with 1/L in (18) are suppressed at least like
m2

!Q
′2/L compared with the leading behavior of A and

B. For a large range in θ the BH cross section (17) will
thus approximately behave like 1/L instead of 1/L2.
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Fig. 2. Handbag diagrams for the Compton process (1) in the
scaling limit. The plus-momentum fractions x, ξ, η refer to the
average proton momentum (1/2)(p + p′)

cuss the relevance of parton densities at very small x when
modeling generalized parton distributions with a double
distribution ansatz.

2 The Compton amplitude

Both DVCS and TCS are limiting cases of the general
Compton process

γ∗(q) + p(p) → γ∗(q′) + p(p′), (1)

where the four-momenta q and q′ of the photons can have
any virtuality. We will also use ∆ = p′ − p, the invariants

Q2 = −q2, Q′2 = q′2, s = (p + q)2, t = ∆2, (2)

and write M for the proton mass. In the region where
at least one of the virtualities is large, the amplitude is
given by the convolution of hard scattering coefficients,
calculable in perturbation theory, and generalized parton
distributions, which describe the nonperturbative physics
of the process. To leading order in αs one then has the
quark handbag diagrams of Fig. 2. The arguments for fac-
torization given in [4], based on the analysis of Feynman
graphs, hold both for large spacelike and for large time-
like virtualities [5]. We thus define the scaling limit as
|q2|+ |q′2| → ∞ at fixed t and fixed ratios q2/s and q′2/s.

For our subsequent discussion let us recall the expres-
sion of the hadronic tensor

Tαβ = i
∫

d4xe−iq·x〈p(p′)|TJα
em(x)Jβ

em(0)|p(p)〉, (3)

where eJα
em(x) is the electromagnetic current with e de-

noting the positron charge. In the scaling limit we have to
leading order in αs

Tαβ = − 1
(p + p′)+

ū(p′)
[
gαβ
T

(
H1γ

+ + E1
iσ+ρ∆ρ

2M

)

+ iεαβ
T

(
H̃1γ

+γ5 + Ẽ1
∆+γ5

2M

)]
u(p). (4)

This expression holds in reference frames where both pro-
ton momenta p and p′ have small transverse components
of order (−t)1/2 and are moving fast to the right, i.e., have
large plus-components. Light-cone coordinates are defined
as v± = (v0 ± v3)/21/2 for any four-vector v. The trans-
verse tensors gT and εT have as only nonzero components

−g11
T = −g22

T = ε12T = −ε21T = 1. Following the notation of
[6] we have introduced the convolutions

H1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
Hq(x, η, t)
ξ − x− iε

− Hq(x, η, t)
ξ + x− iε

)
,

E1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
Eq(x, η, t)
ξ − x− iε

− Eq(x, η, t)
ξ + x− iε

)
,

H̃1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
H̃q(x, η, t)
ξ − x− iε

+
H̃q(x, η, t)
ξ + x− iε

)
,

Ẽ1(ξ, η, t) =
∑

q

e2
q

∫ 1

−1

dx

(
Ẽq(x, η, t)
ξ − x− iε

+
Ẽq(x, η, t)
ξ + x− iε

)

(5)

of the generalized quark distributions defined in [2], sum-
med over quarks of flavor q and electric charge eeq. The
scaling variables ξ and η are given by

ξ = − (q + q′)2

2(p + p′) · (q + q′)
≈ Q2 −Q′2

2s + Q2 −Q′2 ,

η = − (q − q′) · (q + q′)
(p + p′) · (q + q′)

≈ Q2 + Q′2

2s + Q2 −Q′2 , (6)

where the approximations hold in the kinematical limit
we are working in. x, ξ, and η represent plus-momentum
fractions

x =
(k + k′)+

(p + p′)+
, ξ ≈ − (q + q′)+

(p + p′)+
, η ≈ (p− p′)+

(p + p′)+
. (7)

The expressions (4) and (5) reveal that the two-photon
amplitude is independent of the photon virtualities at
fixed ξ, η and t. In the case of spacelike q = q′ this is just
Bjorken scaling. To be precise, the independence on q2 and
q′2 only holds up to logarithmic corrections: the photon
virtualities provide the hard scale of the process and thus
enter through the factorization scale dependence of the
parton distributions, which we have not displayed above.
The corresponding evolution equations are well known [1–
3,?], and as usual we will refer to −1 < x < −η and
η < x < 1 as the DGLAP regions, and to −η < x < η as
the ERBL region of the parton distributions.

Let us now recall the helicity structure of the two-
photon process in the scaling limit. Contracting the had-
ronic tensor with polarization vectors ε of the incoming
and ε′ of the outgoing photon, one obtains the helicity
amplitudes of (1) as

e2Mλ′µ′,λµ = e2εαTαβε′∗β , (8)

where λ (λ′) denotes the helicity of the incoming (outgo-
ing) proton and µ (µ′) the helicity of the incoming (out-
going) photon. Parity invariance provides the relations
M−λ′−µ′,−λ−µ = (−1)λ′−µ′−λ+µMλ′µ′,λµ. From (4) one
easily finds that the quark handbag diagrams only gener-
ate helicity conserving transitions between transverse pho-
tons, Mλ′+,λ+ and Mλ′−,λ−. At order αs one further has

QED dominates over TCS but in specific kinematics

→ cutting out QED with angular cuts :

5
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Figure 6: hu
+(x, η) = hu(x, η) − hu(−x, η) for η = 10−2 (a) and for η = 10−5 (b) for different factorization scales µ2

F = 4
(dotted) , 5 (dashed) , 6 (solid) GeV2.
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Figure 7: (a) The BH cross section integrated over θ ∈ [π/4, 3π/4], ϕ ∈ [0, 2π] , Q′2 ∈ [4.5, 5.5] GeV2, |t| ∈ [0.05, 0.25] GeV2,
as a function of γp c.m. energy squared s. (b) The BH cross section integrated over ϕ ∈ [0, 2π] , |t| ∈ [0.05, 0.25] GeV2, and

various ranges of θ : [π/3, 2π/3] (dotted), [π/4, 3π/4] (dashed) and [π/6, 5π/6] (solid), as a function of Q′2 for s = 105 GeV2

and a double distribution ansatz for hq without any D-term:

hq(x, η) =
∫ 1

0

dx′
∫ 1−x′

−1+x′
dy′

[
δ(x− x′ − ηy′)q(x′)− δ(x + x′ − ηy′)q̄(x′)

]
π(x′, y′)

π(x′, y′) =
3
4

(1− x′)2 − y
′2

(1− x′)3

For the unpolarized distributions q(x) and q̄(x) we take NLO(MS) GRVGJR 2008 parametrization [9]. Their strong
dependence of the factorization scale choice for small x is shown on Fig.5. This results in the strong dependence of
hq for small values of η as shown on Fig.6.

III. CROSS SECTION ESTIMATES

Let us now estimate the different contributions to the lepton pair cross section for ultraperipheral collisions at the
LHC. Since the cross sections decrease rapidly with Q′2, we are interested in the kinematics of moderate Q′2, say a
few GeV2, and large energy, thus very small values of η. Note however that for a given proton energy the photon flux
is higher at smaller photon energy.

GPDs are expected to be large at small x ≈ ξ ξ ≈ Q2/sγp

ë Probe of sea and gluon GPDs in small x regime
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Observing TCS at LHC

ë Characteristic signal from interference (charge conj. odd)
9
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Figure 10: The differential cross sections (solid lines) for t = −0.2GeV2, Q′2 = 5GeV2 and integrated over θ = [π/4, 3π/4],
as a function of ϕ, for s = 107 GeV2 (a), s = 105 GeV2(b), s = 103 GeV2 (c) with µ2

F = 5GeV2. We also display the Compton
(dotted), Bethe-Heitler (dash-dotted) and Interference (dashed) contributions.
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First data
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DiMuon Mass Spectrum for Events Passing Trigger
+ No Backward Tracks + 2 Forward Tracks

 Exclusive Search Strategy

• Exclusive JPsi, Psi’, DiPhoton DiMuon Candidates evident 

• More stats required to investigate Exclusive Phi and Upsilon

!S = 7 TeV Data

!S = 7 TeV Data

8

D. Moran, DIS 2011

CAUTION : TCS not in Monte Carlo !
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From Forward to Backward electroproduction

From GPDs to TDAs



Meson (or γ) deep electroproduction : 3 kinematics

γ∗(q)N(p)→M(k)N ′(p′)

define t = (q − k)2 = (p′ − p)2 u = (q − p′)2 = (p− k)2

ë Forward region : −t small → GPD domain

ë Fixed angle region −t ≈ −u → very small cross sections

ë Backward region : −u small → TDA domain

Backward region may be analyzed similarly as Forward region with

GPDs replaced by TDAs and many common features

Q2 = −q2 large
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from GPDs to TDAs

ë GPDs are not the adequate tool for describing

backward hard electroproduction

ë Basic difference forward vs backward

is the exchange of q̄q vs qqq

ë From ψ̄(z1)ψ(z2) to ψ(z1)ψ(z2)ψ(z3) operators
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TDAs : transition distribution amplitudes

In backward DVCS and backward meson electroproduction, one may

factorize a non-perturbative part describing a baryon to photon or

baryon to meson transition.

L.L.Frankfurt et al, PRD60(1999)

BP, L. Szymanowski, PRD 71 ; PLB 622 (2005)

TDA

DA!1

!3

k1 k3

Mh

P (p1)

P ′(p2)γ#(q)

π(pπ)

Kinematics (light-cone vectors p, n)

p1 = (1 + ξ)p+ M2

1+ξ
n

pπ = (1− ξ)p+ m2−∆2
T

1−ξ n+ ∆T

u = (p1 − pπ)2 � Q2 ∼ O(W2)

skewness parameter : ξ = Q2

2W2−Q2
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Factorization

The perturbative part describes the γ∗qqq → qqq transition.

TABLE I. 14 of the 21 diagrams contributing to the hard-scattering amplitude with their associated coefficient T! and T0
!. The seven

first ones with u-quark lines inverted are not drawn. The crosses represent the virtual-photon vertex.

! T! T0
!

1
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) !Qu"2"#2$"Vp#0

1 !Ap#0

1 #"Vp!Ap#%4Tp#0

1 Tp%2
!2
T

M2T
p#0

4 Tp&
"2"!x1!i$#2"x3!i$#"1!y1#2y3

!Qu"2"#2$"Vp#0

2 !Ap#0

2 #"Vp!Ap#%2"Tp#0

2 %Tp#0

3 #Tp&
"2"!x1!i$#2"x3!i$#"1!y1#2y3

2
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1)
0 0

3
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) Qu"2"#2$4Tp#0

1 Tp%2
!2
T

M2T
p#0

4 Tp&
"x1!i$#"2"!x2!i$#"x3!i$#y1"1!y1#y3

Qu"2"#2$2"Tp#0

2 %Tp#0

3 #Tp&
"x1!i$#"2"!x2!i$#"x3!i$#y1"1!y1#y3

4
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) !Qu"2"#2$"Vp#0

1 !Ap#0

1 #"Vp!Ap#&
"x1!i$#"2"!x3!i$#"x3!i$#y1"1!y1#y3

!Qu"2"#2$"Vp#0

2 !Ap#0

2 #"Vp!Ap#&
"x1!i$#"2"!x3!i$#"x3!i$#y1"1!y1#y3

5
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) Qu"2"#2$"Vp#0

1 %Ap#0

1 #"Vp%Ap#&
"x1!i$#"2"!x3!i$#"x3!i$#y1"1!y2#y3

Qu"2"#2$"Vp#0

2 %Ap#0

2 #"Vp%Ap#&
"x1!i$#"2"!x3!i$#"x3!i$#y1"1!y2#y3

6
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1)
0 0

7
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) !Qd"2"#2$2"Vp#0

1 Vp%Ap#0

1 Ap#&
"x1!i$#"2"!x3!i$#2y1"1!y3#2

!Qd"2"#2$2"Vp#0

2 Vp%Ap#0

2 Ap#&
"x1!i$#"2"!x3!i$#2y1"1!y3#2

8
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1)
0 0

9
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) !Qu"2"#2$"Vp#0

1 !Ap#0

1 #"Vp!Ap#%4Tp#0

1 Tp%2
!2
T

M2T
p#0

4 Tp&
"2"!x1!i$#2"x2!i$#"1!y1#2y2

!Qu"2"#2$"Vp#0

2 !Ap#0

2 #"Vp!Ap#%2"Tp#0

2 %Tp#0

3 #Tp&
"2"!x1!i$#2"x2!i$#"1!y1#2y2

10
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) !Qu"2"#2$"Vp#0

1 %Ap#0

1 #"Vp%Ap#%4Tp#0

1 Tp%2
!2
T

M2T
p#0

4 Tp&
"x1!i$#"2"!x2!i$#2y1"1!y2#2

!Qu"2"#2$"Vp#0

2 %Ap#0

2 #"Vp%Ap#%2"Tp#0

2 %Tp#0

3 #Tp&
"x1!i$#"2"!x2!i$#2y1"1!y2#2

11
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) 0 0

HARD EXCLUSIVE ELECTROPRODUCTION OF A PION IN . . . PHYSICAL REVIEW D 75, 074004 (2007)

074004-5

The non-perturbative part describes the proton-meson transition.

πp

x2x1 x3
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Energy flow in TDAs

Different regions

ë Both for Baryon → Meson and Baryon → photon,

3 quarks are exchanged in the t-channel ; x1 + x2 + x3 = 2ξ

x1 x2 x3 x1 x2 −x3 x1 −x2 −x3

ERBL DGLAP1 DGLAP2

ë ERBL region : xi > 0 ; (as for proton DA)

ë DGLAP1 regions : x1 > 0;x2 > 0;x3 < 0 + permutations

ëDGLAP2 regions : x1 > 0;x2 < 0;x3 < 0 + permutations

→ Different physical picture and evolution equations
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Physical picture of TDAs

ë The TDAs provides information on the next to minimal Fock state in P

=
p p′

∗

p
×

p′

P = |u u d π0 > or |u d d π+ > how one can find a meson in a proton

ë Impact picture Representation Fourier transform ~∆T → ~bT

As for GPDs, the t dependence of TDAs maps the transverse quark position
In the ERBL region : Transverse localization of qqq core of size 1

Q

ξ
1+ξb

pp = (1 + ξ)p

pπ = (1− ξ)p

ξ
1−ξb

b

x1

x2
x3

1/Q

ξ
1+ξb

pp = (1 + ξ)p

pπ = (1− ξ)p

ξ
1−ξb

b

x1

x2

x3
1/Q

ξ
1+ξb

pp = (1 + ξ)p

pπ = (1− ξ)p

ξ
1−ξb

b

x1
x2

x31/Q

Femtophoto of 3 quark Femtophoto of 2 quark Femtophoto of 2 antiquark
core in the proton in the proton in the meson

ERBL DGLAP1 DGLAP2
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Evolution equations

ë Same operator as in DAs → Same renormalization group equations
Q d
dQ F ↑↓↑(xi) = −αs2π[3

2 CF F
↑↓↑(xi)− (1 + 1

Nc
)A]

A =






1+ξ∫

−1+ξ

dx′1

[
x1ρ(x′1, x1)

x′1(x′1 − x1)

]

+

+

1+ξ∫

−1+ξ

dx′2

[
x2ρ(x′2, x2)

x′2(x′2 − x2)

]

+


F ↑↓↑(x′1, x

′
2, x3)

+




1+ξ∫

−1+ξ

dx′1

[
x1ρ(x′1, x1)

x′1(x′1 − x1)

]

+

+

1+ξ∫

−1+ξ

dx′3

[
x3ρ(x′3, x3)

x′3(x′3 − x3)

]

+


F ↑↓↑(x′1, x2, x

′
3)

+




1+ξ∫

−1+ξ

dx′2

[
x2ρ(x′2, x2)

x′2(x′2 − x2)

]

+

+

1+ξ∫

−1+ξ

dx′3

[
x3ρ(x′3, x3)

x′3(x′3 − x3)

]

+


F ↑↓↑(x1, x

′
2, x

′
3)

+
1

2ξ − x3




1+ξ∫

−1+ξ

dx′1
x1

x′1
ρ(x′1, x1) +

1+ξ∫

−1+ξ

dx′2
x2

x′2
ρ(x′2, x2)


F ↑↓↑(x′1, x

′
2, x3)

+
1

2ξ − x1




1+ξ∫

−1+ξ

dx′2
x2

x′2
ρ(x′2, x2) +

1+ξ∫

−1+ξ

dx′3
x3

x′3
ρ(x′3, x3)


F ↑↓↑(x1, x

′
2, x

′
3)







with integration region restricted by : ρ(x, y) = θ(x ≥ y ≥ 0)− θ(x ≤ y ≤ 0), and x′i ∈ [−1 + ξ,1 + ξ]

No detailed study yet
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Dirac decomposition

decompose 〈π(pπ)| εijkuiα(z1 n)ujβ(z2 n)dkγ(z3 n) |p(p, s)〉
∣∣∣∣
n2=0

on independent Dirac structures (∆ = pπ − p , 2P = pπ + p)

(u = nucleon spinor, â = aµγµ, σab = [â, b̂]/2)

(v1)αβγ = (P̂C)αβ(P̂ u)γ (a1)αβγ = (P̂ γ5C)αβ(γ5P̂ u)γ

(v2)αβγ = (P̂C)αβ(∆̂u)γ (a2)αβγ = (P̂ γ5C)αβ(γ5∆̂u)γ

(t1)αβγ = (σPµC)αβ(γµP̂ u)γ (t2)αβγ = (σPµC)αβ(γµ∆̂u)γ

(t3)αβγ = 1
M (σP∆C)αβ(P̂ u)γ (t4)αβγ = 1

M (σP∆C)αβ(∆̂u)γ

equivalent to helicity decomposition of p→ πqqq

v1 − 2ξv2 , a1 − 2ξa2 , t1 − 2ξt2 survive at ∆T = 0

and define scalar functions V1, A1, T1, V2, A2, T2, T3, T4
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Polynomiality property

As for GPDs Lorentz invariance constrains skewness dependence :

ë Define xi Mellin moments

〈xn1

1 x
n2

2 x
n3

3 H
πN
s 〉 =

∫
dx1

∫
dx2

∫
dx3δ(x1 + x2 + x3 − 2ξ)xn1

1 x
n2

2 x
n3

3 H
πN
s (x1, x2, x3, ξ,∆) .

ë They are expressed through Form Factors of local operators

Ô
µ1...µn1, ν1...νn2, λ1...λn3
ρτχ (0) =

[
i ~Dµ1... i ~Dµn1Ψρ

] [
i ~Dν1... i ~Dνn2Ψτ

] [
i ~Dλ1... i ~Dλn3Ψχ

]
,

ë Get polynomials in ξ up to ξn1+n2+n3+1

〈xn1

1 x
n2

2 x
n3

3 {Vi, Ai, T1,2}〉 =
∑N

n=1(−1)N−n(2ξ)n
∑n1

i=0

∑n2

j=0

∑n3

k=0 δi+j+k, n A
{Vi, Ai, T1,2} (ni)
ijk (∆2)

−(2ξ)N+1C
{Vi, Ai, T1,2} (n1,n2,n3)
N+1 (∆2) (ξN+1 → D-term)

〈xn1

1 x
n2

2 x
n3

3 {T3,4}〉 =
∑N

n=1(−1)N−n(2ξ)n
∑n1

i=0

∑n2

j=0

∑n3

k=0 δi+j+k, n A
{T3,4} (n1,n2,n3)
ijk (∆2) .

TO BE SATISFIED BY ALL CONSISTENT MODELS
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Nucleon exchange in TDA framework

ë Write effective Lagrangian for πN̄N interaction :

Heff = −igπNNN̄α(σa)αβγ5N
βπa

ë Get πN matrix element

〈πa(pπ)|Ôαβ γ
ρτχ (λin)|Nι(p1)〉 =

∑
sp
〈0|Ôαβγ

ρτχ (λin)|Nκ(−∆, sp)〉(σa)κι igπNN Ū%(−∆,sp)
∆2−M2

(
γ5U(p1, s1)

)
%
.

ë Decompose on Dirac struct. and get contrib. to I = 1
2 πN TDAs

{
V1, A1, T1

}(πN)1/2(x1, x2, x3) = ΘERBL(x1, x2, x3)× (gπNN) Mfπ
∆2−M2 2ξ

1
(2ξ)2

{
V p, Ap, T p

}(
x1

2ξ
, x2

2ξ
, x3

2ξ

)
;

{
V2, A2, T2

}(πN)1/2(x1, x2, x3) = 1
2

{
V1, A1, T1

}(πN)1/2(x1, x2, x3) ; T (πN)
3 = T (πN)

4 = 0

with ΘERBL(x1, x2, x3) ≡ ∏3
k=1 θ(0 ≤ xk ≤ 2ξ).

Nucleon exchange contrib. is a pure D- term contribution.
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Models for TDAs

ë Closest object : Baryon Distribution Amplitude φN :

known from RG analysis, Conf. Inv. , Lattice , QCD sum rules

ë CHIRAL LIMIT of p→ π TDA (ξ → 1)

< πa(k)|O|P (p, s) >= −i
fπ
< 0|[Qa5, O]|P (p, s) >

In particular for pπ0 GDA we get

4�0|uρ(1)uτ (2)dχ(3)|pπ0� = M
(πN)1/2 {12}
ρτχ (1, 2, 3) +

2

3
M

(πN)3/2
ρτχ (1, 2, 3)

=
ifN

fπ

�
−

�
γ5
χηv

N
ρτ, η

� 1

2
V p(1, 2, 3)−

�
γ5
χηa

N
ρτ, η

� 1

2
Ap(1, 2, 3)−

�
γ5
χηt

N
ρτ, η

� 3

2
T p(1, 2, 3)

�
;

4�0|uρ(1)uτ (2)dχ(3)|nπ+� = −4�0|dρ(1)dτ (2)uχ(3)|pπ−�

=
√

2M
(πN)1/2 {12}
ρτχ (1, 2, 3)−

√
2

3
M

(πN)3/2
ρτχ (1, 2, 3)

=
ifN

fπ

�
−

�
γ5
χηv

N
ρτ, η

� 1

2
√

2
[−φN(1, 2, 3)− φN(2, 1, 3)− 2(φN(3, 1, 2) + φN(3, 2, 1)]

−
�
γ5
χηa

N
ρτ, η

� 1

2
√

2
[φN(1, 2, 3)− φN(2, 1, 3)− 2(φN(3, 1, 2)− φN(3, 2, 1))]

−
�
γ5
χηt

N
ρτ, η

� 1

2
√

2
[φN(1, 3, 2) + φN(2, 3, 1)]

�
. (78)

So we recover the result of [15].

Now we can establish the consequences of the soft pion theorem (72) for πN TDAs.

Up to the problem of analytic continuation in ∆2 applying crossing to the matrix element

(71) is trivial. The contributions to πN TDAs occurring in the parametrization (10) can

be established with the help of relations between the Dirac structures (12) and those of

(75), (76):

γ5
χηv

N
ρτ, η =

1

M

�
v1

(πN)
ρτ, χ −

1

2
v2

(πN)
ρτ, χ

�
;

γ5
χηa

N
ρτ, η =

1

M

�
a1

(πN)
ρτ, χ −

1

2
a2

(πN)
ρτ, χ

�
;

γ5
χηt

N
ρτ, η = − 1

M

�
t1

(πN)
ρτ, χ −

1

2
t2

(πN)
ρτ, χ

�
. (79)

One may check that in the chiral limit this results in the following contributions to

independent isospin-1
2

and isospin-3
2

πN (61), (67):

φ
(πN)1/2

1 (x1, x2, x3, ξ = 1, ∆2 = M2)
���

soft
pion

=
1

24
φN(x1, x2, x3) +

1

6
φN(x3, x2, x1) ;

φ
(πN)1/2

2 (x1, x2, x3, ξ = 1, ∆2 = M2)
���

soft
pion

= −1

2
φ

(πN)1/2

1 (x1, x2, x3, ξ = 1, ∆2 = M2)

����
soft
pion

;

φ
(πN)3/2

1 (x1, x2, x3, ξ = 1, ∆2 = M2)
���

soft
pion

=
1

4

�
φN(x1, x2, x3) + φN(x3, x2, x1)

�
;

φ
(πN)3/2

2 (x1, x2, x3, ξ = 1, ∆2 = M2)
���

soft
pion

= −1

2
φ

(πN)3/2

1 (x1, x2, x3, ξ = 1, ∆2 = M2)

����
soft
pion

.

(80)

24

ë Skew the chiral limit away from ξ = 1 limit

through quadruple distributions (cf Radyushkin’s double dist. for GPDs)

which populate the DGLAP regions.
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TDA modeling

from BP,LS + Kirill Semenov-Tian-Shansky, Phys Rev D82 (2010) 094030

”quark-diquark” (ω, v) coordinates

(x1, x2, x3) barycentric coordinates
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Conclusions

GPDs and TDAs explore confinement dynamics of quarks in hadrons
in a complementary way.

They are matrix elements of different non local light cone operators

GPDs extraction needs more understanding of NLO corrections

ë Timelike Compton Scattering = a useful complement to dVCS

ë TCS data from ZEUS and LHC ... and from JLab12 ?

TDAs extraction is crucial to probe meson content of baryons

ë First signals at JLab at 6 GeV

ëCLAS12 proposals on pseudoscalar and vector meson production :
backward ϕ (strangeness in the nucleon)

ë PANDA at GSI-FAIR and COMPASS with π beam : timelike
channels for TDA extraction
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