New results in exclusive hard reactions
 GPDs and TDAs

EPS 2011 Grenoble, July 2011
B. Pire

CPhT, École Polytechnique, Palaiseau
based on work done with K Semenov-Tian-Shansky, L Szymanowski, J Wagner
Phys Rev D 2005 ; Phys Letters 2005; Phys Rev D 2010 ; Phys Rev D 2011

Plan

\Rightarrow QCD factorization for exclusive reactions

* Success in DVCS : See previous presentation, J. Bowles
\rightarrow GPD properties
\Rightarrow On Timelike Compton scattering
\rightarrow NLO corrections
\rightarrow access in UPC at LHC
BP, L Szymanowski, J Wagner , Phys Rev D. 2009 and 2011
\Rightarrow Backward meson electroproduction
\rightarrow from GPDs to TDAs
BP, K Semenov-Tian-Shansky, L Szymanowski, Phys Rev D. 2010 and 2011.

QCD factorization in Exclusive processes

DVCS

Meson Production

\Rightarrow Factorisation between a hard part (perturbatively calculable) and a soft part (non-perturbative) Generalized Parton Distribution demonstrated for

$$
\begin{aligned}
& Q^{2} \rightarrow \infty, x_{B}=\frac{Q^{2}}{Q^{2}+W^{2}} \text { fixed and } t \ll \text { fixed } \\
& \quad \text { D. Muller et al., Ji, Radyushkin, Collins et al. , '94, '96,'98 }
\end{aligned}
$$

Generalised Parton Distributions

Non-Local operators (as in DIS) and non diagonal matrix elements $=$ soft part of the amplitude for exclusive reactions

GPD $=$ Fourier Transform of matrix elements

$$
\left.\left\langle N\left(p^{\prime}, \lambda^{\prime}\right)\right| \bar{\psi}(-z / 2)_{\alpha}[-z / 2 ; z / 2] \psi(z / 2)_{\beta}|N(p, \lambda)\rangle\right|_{z^{+}=0, z_{T}=0}
$$

ON THE LIGHT CONE $z^{2}=0$

$$
p^{\prime}-p=\Delta \quad \Delta^{2}=t \quad \Delta^{+}=-\xi\left(p+p^{\prime}\right)^{+} \quad x-x^{\prime}=2 \xi
$$

Energy flow in GPDs

Three different regions

antiquark content
$\bar{q} q$ content
quark content

Two different evolution equations
as $\bar{q}\left(-x, Q^{2}\right)$
as $\Phi^{\pi}\left(z, Q^{2}\right)$
as $q\left(x, Q^{2}\right)$

DGLAP
$\rightarrow \delta(-x)$

ERBL
$\rightarrow \Phi_{a s}^{\pi}\left(z, Q^{2}\right)=6 z \bar{z}$

DGLAP

Impact picture Representation

t dependence of GPDs maps transverse position b_{T} of quarks.
Fourier transform GPD at zero skewedness $q\left(x, b_{T}\right)=(2 \pi)^{-2} \int d^{2} \Delta_{T} e^{i \Delta_{T} \cdot b_{T}} H(x, \xi=0, t)$ probability

Generalize at $\xi \neq 0 \rightarrow$ Quantum femtophotography.
The t-dependence of dVCS localizes transversally the q (DGLAP) or the $\bar{q} q$ pairs of size $\frac{1}{Q}$ (ERBL) in the proton

$$
\text { DGLAP region }(x>\xi)
$$

(a)

Femtophotography of quark in the proton
(b)

Femtophotography of quark-antiquark pair in the proton

This is the reason I consider GPDs as a breakthrough in QCD physics

\Leftrightarrow Beautiful progress in forward exclusive photon (DVCS) and meson (DVMP) experiments and analysis
\rightleftharpoons Need to test universality of GPDs : TCS vs DVCS extractions
\Rightarrow Need to better understand NLO and twist 3 contributions ($\rightarrow \rho_{T}$) see A. Besse POSTER session
\Rightarrow Extend forward case (= GPDs : $\bar{\psi} \psi$ operators) to backward kinematics \rightarrow TDAs : $\psi \psi \psi$ operators

On spacelike vs timelike probe

$$
\gamma^{*}(q) N(p) \rightarrow \gamma^{*}\left(q^{\prime}\right) N^{\prime}\left(p^{\prime}\right) \quad \text { DVCS vs TCS }
$$

spacelike $q^{2}<0 ; q^{\prime 2}=0 \quad$ vs timelike $q^{2}=0 ; q^{\prime 2}>0$

$$
e N \rightarrow e^{\prime} N \gamma \quad \text { vs } \quad \gamma N \rightarrow N \mu^{+} \mu^{-}
$$

$\mathrm{LO}: \mathcal{A}_{D V C S}=\mathcal{A}_{T C S}^{*}$
$\mathrm{NLO}: \mathcal{A}_{D V C S} \neq \mathcal{A}_{T C S}^{*}$

$$
R_{T-S}^{q}=\frac{C_{1(\mathrm{TCS})}^{q}-C_{1(\mathrm{DVCS})}^{q^{*}}}{C_{0}^{q}} .
$$

\rightleftharpoons Both timelike and spacelike data useful to check NLO analysis !

GPDs at LHC (and RHIC)

$\stackrel{\text { Ultraperipheral Collisions : quasi real photons from proton beam }}{ }$
$\mu^{+} \mu^{-}$pair production

QED dominates over TCS but in specific kinematics
\rightarrow cutting out QED with angular cuts :

GPDs are expected to be large at small $x \approx \xi$
$\xi \approx Q^{2} / s_{\gamma p}$
\Rightarrow Probe of sea and gluon GPDs in small x regime

Observing TCS at LHC

\Rightarrow Characteristic signal from interference (charge conj. odd)

First data

CAUTION : TCS not in Monte Carlo!

From Forward to Backward electroproduction

From GPDs to TDAs

Meson (or γ) deep electroproduction : 3 kinematics

$$
\gamma^{*}(q) N(p) \rightarrow M(k) N^{\prime}\left(p^{\prime}\right)
$$

define $t=(q-k)^{2}=\left(p^{\prime}-p\right)^{2}$

$$
u=\left(q-p^{\prime}\right)^{2}=(p-k)^{2}
$$

\rightleftharpoons Forward region : $-t$ small \rightarrow GPD domain
\curvearrowleft Fixed angle region $-t \approx-u \rightarrow$ very small cross sections
\leadsto Backward region : $-u$ small \rightarrow TDA domain

Backward region may be analyzed similarly as Forward region with GPDs replaced by TDAs and many common features

$$
Q^{2}=-q^{2} \text { large }
$$

from GPDs to TDAs

\Rightarrow GPDs are not the adequate tool for describing backward hard electroproduction
\Rightarrow Basic difference forward vs backward is the exchange of $\quad \bar{q} q \quad$ vs $q q q$
\Rightarrow From $\bar{\psi}\left(z_{1}\right) \psi\left(z_{2}\right)$ to $\psi\left(z_{1}\right) \psi\left(z_{2}\right) \psi\left(z_{3}\right)$ operators

TDAs : transition distribution amplitudes

In backward DVCS and backward meson electroproduction, one may factorize a non-perturbative part describing a baryon to photon or baryon to meson transition.

L.L.Frankfurt et al, PRD60(1999)

$$
\text { BP, L. Szymanowski, PRD } 71 \text {; PLB } 622 \text { (2005) }
$$

Kinematics (light-cone vectors \mathbf{p}, \mathbf{n}) $p_{1}=(1+\xi) p+\frac{M^{2}}{1+\xi} n$ $p_{\pi}=(1-\xi) p+\frac{m^{2}-\Delta_{T}^{2}}{1-\xi} n+\Delta_{T}$

$$
u=\left(p_{1}-p_{\pi}\right)^{2} \ll Q^{2} \sim O\left(W^{2}\right)
$$

skewness parameter : $\xi=\frac{Q^{2}}{2 W^{2}-Q^{2}}$

Factorization

The perturbative part describes the $\gamma^{*} q q q \rightarrow q q q$ transition.

The non-perturbative part describes the proton-meson transition.

Energy flow in TDAs

Different regions

\rightarrow Both for Baryon \rightarrow Meson and Baryon \rightarrow photon,
3 quarks are exchanged in the t-channel ; $x_{1}+x_{2}+x_{3}=2 \xi$

ERBL

DGLAP1

DGLAP2
\Rightarrow ERBL region : $x_{i}>0 ; \quad$ (as for proton DA)
\Rightarrow DGLAP1 regions : $x_{1}>0 ; x_{2}>0 ; x_{3}<0+$ permutations
\Rightarrow DGLAP2 regions : $x_{1}>0 ; x_{2}<0 ; x_{3}<0+$ permutations
\rightarrow Different physical picture and evolution equations

Physical picture of TDAs

\leadsto The TDAs provides information on the next to minimal Fock state in P

$P=\mid u u d \pi^{0}>$ or $\mid u d d \pi^{+}>$how one can find a meson in a proton
\otimes Impact picture Representation Fourier transform $\vec{\Delta}_{T} \rightarrow \vec{b}_{T}$
As for GPDs, the t dependence of TDAs maps the transverse quark position In the ERBL region: Transverse localization of $q q q$ core of size $\frac{1}{Q}$

Femtophoto of 3 quark core in the proton ERBL

Femtophoto of 2 quark in the proton

DGLAP1

Femtophoto of 2 antiquark in the meson

DGLAP2

Evolution equations

\leadsto Same operator as in DAs \rightarrow Same renormalization group equations

$$
\begin{aligned}
& Q \frac{d}{d Q} F^{\uparrow \downarrow \uparrow}\left(x_{i}\right)=-\frac{\alpha_{s}}{2 \pi}\left[\frac{3}{2} C_{F} F^{\uparrow \downarrow \uparrow}\left(x_{i}\right)-\left(1+\frac{1}{N_{c}}\right) \mathcal{A}\right] \\
\mathcal{A}= & {\left[\left(\int_{-1+\xi}^{1+\xi} d x_{1}^{\prime}\left[\frac{x_{1} \rho\left(x_{1}^{\prime}, x_{1}\right)}{x_{1}^{\prime}\left(x_{1}^{\prime}-x_{1}\right)}\right]_{+}+\int_{-1+\xi}^{1+\xi} d x_{2}^{\prime}\left[\frac{x_{2} \rho\left(x_{2}^{\prime}, x_{2}\right)}{x_{2}^{\prime}\left(x_{2}^{\prime}-x_{2}\right)}\right]_{+}\right) F^{\uparrow \downarrow \uparrow}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}\right)\right.} \\
+ & \left(\int_{-1+\xi}^{1+\xi} d x_{1}^{\prime}\left[\frac{x_{1} \rho\left(x_{1}^{\prime}, x_{1}\right)}{x_{1}^{\prime}\left(x_{1}^{\prime}-x_{1}\right)}\right]_{+}+\int_{-1+\xi}^{1+\xi} d x_{3}^{\prime}\left[\frac{x_{3} \rho\left(x_{3}^{\prime}, x_{3}\right)}{x_{3}^{\prime}\left(x_{3}^{\prime}-x_{3}\right)}\right]_{+}\right) F^{\uparrow \downarrow \uparrow}\left(x_{1}^{\prime}, x_{2}, x_{3}^{\prime}\right) \\
+ & \left(\int_{1+\xi}^{1+\xi} d x_{2}^{\prime}\left[\frac{x_{2} \rho\left(x_{2}^{\prime}, x_{2}\right)}{x_{2}^{\prime}\left(x_{2}^{\prime}-x_{2}\right)}\right]_{+}^{1+\xi}+\int_{-1+\xi}^{1+\xi} d x_{3}^{\prime}\left[\frac{x_{3} \rho\left(x_{3}^{\prime}, x_{3}\right)}{x_{3}^{\prime}\left(x_{3}^{\prime}-x_{3}\right)}\right]_{+}^{1+\xi}\right) F^{\uparrow \downarrow \uparrow}\left(x_{1}, x_{2}^{\prime}, x_{3}^{\prime}\right) \\
+ & \frac{1}{2 \xi-x_{3}}\left(\int_{-1+\xi}^{1+\xi} d x_{1}^{\prime} \frac{x_{1}}{x_{1}^{\prime}} \rho\left(x_{1}^{\prime}, x_{1}\right)+\int_{-\xi}^{1+\xi} d x_{2}^{\prime} \frac{x_{2}}{x_{2}^{\prime}} \rho\left(x_{2}^{\prime}, x_{2}\right)\right) F^{\uparrow \downarrow \uparrow}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}\right) \\
+ & \left.\left.\frac{1}{2 \xi-x_{1}}\left(\int_{-1+\xi}^{1+\xi} d x_{2}^{\prime} \frac{x_{2}}{x_{2}^{\prime}} \rho\left(x_{2}^{\prime}, x_{2}\right)+\int_{-1+\xi}^{1+\xi} d x_{3}^{\prime} \frac{x_{3}^{\prime}}{x_{3}^{\prime}} \rho\left(x_{3}^{\prime}, x_{3}\right)\right) F^{\uparrow \downarrow \uparrow}\left(x_{1}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right]\right\}
\end{aligned}
$$

with integration region restricted by : $\rho(x, y)=\theta(x \geq y \geq 0)-\theta(x \leq y \leq 0)$, and $x_{i}^{\prime} \in[-1+\xi, 1+\xi]$

No detailed study yet

Dirac decomposition

decompose $\left.\left\langle\pi\left(p_{\pi}\right)\right| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1} n\right) u_{\beta}^{j}\left(z_{2} n\right) d_{\gamma}^{k}\left(z_{3} n\right)|p(p, s)\rangle\right|_{n^{2}=0}$ on independent Dirac structures ($\Delta=p_{\pi}-p, 2 P=p_{\pi}+p$)

$$
\begin{aligned}
&\left(u=\text { nucleon spinor, } \widehat{a}=a^{\mu} \gamma^{\mu}, \sigma_{a b}=[\widehat{a}, \widehat{b}] / 2\right) \\
&\left(v_{1}\right)_{\alpha \beta \gamma}=(\widehat{P} C)_{\alpha \beta}(\widehat{P} u)_{\gamma}\left(a_{1}\right)_{\alpha \beta \gamma}=\left(\widehat{P} \gamma^{5} C\right)_{\alpha \beta}\left(\gamma^{5} \widehat{P} u\right)_{\gamma} \\
&\left(v_{2}\right)_{\alpha \beta \gamma}=(\widehat{P} C)_{\alpha \beta}(\widehat{\Delta} u)_{\gamma}\left(a_{2}\right)_{\alpha \beta \gamma}=\left(\widehat{P} \gamma^{5} C\right)_{\alpha \beta}\left(\gamma^{5} \widehat{\Delta} u\right)_{\gamma} \\
&\left(t_{1}\right)_{\alpha \beta \gamma}=\left(\sigma_{P \mu} C\right)_{\alpha \beta}\left(\gamma^{\mu} \widehat{P} u\right)_{\gamma}\left(t_{2}\right)_{\alpha \beta \gamma}=\left(\sigma_{P \mu} C\right)_{\alpha \beta}\left(\gamma^{\mu} \widehat{\Delta} u\right)_{\gamma} \\
&\left(t_{3}\right)_{\alpha \beta \gamma}=\frac{1}{M}\left(\sigma_{P \Delta} C\right)_{\alpha \beta}(\widehat{P} u)_{\gamma}\left(t_{4}\right)_{\alpha \beta \gamma}=\frac{1}{M}\left(\sigma_{P \Delta} C\right)_{\alpha \beta}(\widehat{\Delta} u)_{\gamma}
\end{aligned}
$$

equivalent to helicity decomposition of $p \rightarrow \pi q q q$

$$
v_{1}-2 \xi v_{2}, a_{1}-2 \xi a_{2}, t_{1}-2 \xi t_{2} \text { survive at } \Delta_{T}=0
$$

and define scalar functions $V_{1}, A_{1}, T_{1}, V_{2}, A_{2}, T_{2}, T_{3}, T_{4}$

Polynomiality property

As for GPDs Lorentz invariance constrains skewness dependence :
\Rightarrow Define x_{i} Mellin moments

$$
\left\langle x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} H_{s}^{\pi N}\right\rangle=\int d x_{1} \int d x_{2} \int d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-2 \xi\right) x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} H_{s}^{\pi N}\left(x_{1}, x_{2}, x_{3}, \xi, \Delta\right)
$$

\rightleftharpoons They are expressed through Form Factors of local operators
\leadsto Get polynomials in ξ up to $\xi^{n_{1}+n_{2}+n_{3}+1}$

$$
\begin{gathered}
\left\langle x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{\left.n_{3}\left\{V_{i}, A_{i}, T_{1,2}\right\}\right\rangle=} \sum_{n=1}^{N}(-1)^{N-n}(2 \xi)^{n} \sum_{i=0}^{n_{1}} \sum_{j=0}^{n_{2}} \sum_{k=0}^{n_{3}} \delta_{i+j+k, n} A_{i j k}^{\left\{V_{i}, A_{i}, T_{1,2}\right\}\left(n_{i}\right)}\left(\Delta^{2}\right)\right. \\
-(2 \xi)^{N+1} C_{N+1}^{\left\{V_{i}, A_{i}, T_{1,2}\right\}\left(n_{1}, n_{2}, n_{3}\right)}\left(\Delta^{2}\right) \quad\left(\xi^{N+1} \rightarrow\right. \text { D-term) } \\
\left\langle x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}}\left\{T_{3,4}\right\}\right\rangle= \\
\text { TO BE SATISFIED BY ALL CONSISTENT MODELS }
\end{gathered}
$$

Nucleon exchange in TDA framework

\rightleftharpoons Write effective Lagrangian for $\pi \bar{N} N$ interaction :
$\mathcal{H}_{\mathrm{eff}}=-i g_{\pi N N} \bar{N}_{\alpha}\left(\sigma_{a}\right)_{\beta}^{\alpha} \gamma_{5} N^{\beta} \pi_{a}$

π
\leadsto Get πN matrix element

$$
\left\langle\pi_{a}\left(p_{\pi}\right)\right| \widehat{O}_{\rho \tau \chi}^{\alpha \beta \gamma}\left(\lambda_{i} n\right)\left|N_{\iota}\left(p_{1}\right)\right\rangle=\sum_{s_{p}}\langle 0| \widehat{O}_{\rho \tau \chi}^{\alpha \beta \gamma}\left(\lambda_{i} n\right)\left|N_{\kappa}\left(-\Delta, s_{p}\right)\right\rangle\left(\sigma_{a}\right)_{\iota}^{\kappa} \frac{\kappa g_{\pi N N} \bar{U}_{\varrho}\left(-\Delta, s_{p}\right)}{\Delta^{2}-M^{2}}\left(\gamma^{5} U\left(p_{1}, s_{1}\right)\right)_{\varrho} .
$$

\leadsto Decompose on Dirac struct. and get contrib. to $I=\frac{1}{2} \pi N$ TDAs $\left\{V_{1}, A_{1}, T_{1}\right\}^{(\pi N)_{1 / 2}}\left(x_{1}, x_{2}, x_{3}\right)=\Theta_{\mathrm{ERBL}}\left(x_{1}, x_{2}, x_{3}\right) \times\left(g_{\pi N N}\right) \frac{M f_{\pi}}{\Delta^{2}-M^{2}} 2 \xi \frac{1}{(2 \xi)^{2}}\left\{V^{p}, A^{p}, T^{p}\right\}\left(\frac{x_{1}}{2 \xi}, \frac{x_{2}}{2 \xi}, \frac{x_{3}}{2 \xi}\right) ;$

$$
\begin{aligned}
\left\{V_{2}, A_{2}, T_{2}\right\}^{(\pi N)_{1 / 2}}\left(x_{1}, x_{2}, x_{3}\right) & =\frac{1}{2}\left\{V_{1}, A_{1}, T_{1}\right\}^{(\pi N)_{1 / 2}}\left(x_{1}, x_{2}, x_{3}\right) \quad ; \quad T_{3}^{(\pi N)}=T_{4}^{(\pi N)}=0 \\
& \text { with } \Theta_{\mathrm{ERBL}}\left(x_{1}, x_{2}, x_{3}\right) \equiv \prod_{k=1}^{3} \theta\left(0 \leq x_{k} \leq 2 \xi\right) .
\end{aligned}
$$

Nucleon exchange contrib. is a pure D - term contribution.

Models for TDAs

\Rightarrow Closest object : Baryon Distribution Amplitude ϕ^{N} : known from RG analysis, Conf. Inv., Lattice , QCD sum rules
\Rightarrow CHIRAL LIMIT of $p \rightarrow \pi$ TDA $(\xi \rightarrow 1)$

$$
\begin{aligned}
& <\pi^{a}(k)|O| P(p, s)>=\frac{-i}{f_{\pi}}<0\left|\left[Q_{5}^{a}, O\right]\right| P(p, s)> \\
& \left.\phi_{1}^{(\pi N)_{1 / 2}}\left(x_{1}, x_{2}, x_{3}, \xi=1, \Delta^{2}=M^{2}\right)\right|_{\substack{\text { soft } \\
\text { pion }}}=\frac{1}{24} \phi^{N}\left(x_{1}, x_{2}, x_{3}\right)+\frac{1}{6} \phi^{N}\left(x_{3}, x_{2}, x_{1}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \left.\phi_{1}^{(\pi N)_{3 / 2}}\left(x_{1}, x_{2}, x_{3}, \xi=1, \Delta^{2}=M^{2}\right)\right|_{\substack{\text { soft } \\
\text { pion }}}=\frac{1}{4}\left(\phi^{N}\left(x_{1}, x_{2}, x_{3}\right)+\phi^{N}\left(x_{3}, x_{2}, x_{1}\right)\right) \text {; } \\
& \left.\left.\phi_{2}^{(\pi N)_{3 / 2}}\left(x_{1}, x_{2}, x_{3}, \xi=1, \Delta^{2}=M^{2}\right)\right|_{\substack{\text { soot } \\
\text { pion }}}=-\frac{1}{2} \phi_{1}^{(\pi N)_{3 / 2}}\left(x_{1}, x_{2}, x_{3}, \xi=1, \Delta^{2}=M^{2}\right) \right\rvert\,
\end{aligned}
$$

\Rightarrow Skew the chiral limit away from $\xi=1$ limit
through quadruple distributions (cf Radyushkin's double dist. for GPDs) which populate the DGLAP regions.

TDA modeling

from BP,LS + Kirill Semenov-Tian-Shansky, Phys Rev D82 (2010) 094030

"quark-diquark" (ω, v) coordinates

(x_{1}, x_{2}, x_{3}) barycentric coordinates

Conclusions

GPDs and TDAs explore confinement dynamics of quarks in hadrons in a complementary way.
They are matrix elements of different non local light cone operators
GPDs extraction needs more understanding of NLO corrections
\Rightarrow Timelike Compton Scattering $=$ a useful complement to dVCS
\Rightarrow TCS data from ZEUS and LHC ... and from JLab12?
TDAs extraction is crucial to probe meson content of baryons
\rightleftharpoons First signals at JLab at 6 GeV
\Rightarrow CLAS12 proposals on pseudoscalar and vector meson production : backward φ (strangeness in the nucleon)
\Rightarrow PANDA at GSI-FAIR and COMPASS with π beam : timelike channels for TDA extraction

Please note

6th Int. Conf. on Quarks and Nuclear Physics

40 years of development of QCD
École Polytechnique, Palaiseau (France), APRIL 16-20, 2012 http ://qnp2012.sciencesconf.org/

