Searches for CPViolation in Charm Decays at LHCb

Mat Charles (Oxford) on behalf of the LHCb collaboration

Disclaimer: All results are preliminary

The LHCb detector

Data-taking

- Today's results use just the 2010 sample.
- Already an order of magnitude more integrated luminosity in 2011.
 - Writing out events with fully reconstructed charm hadrons at a rate of 1 kHz

CP violation

• 3 types of CP violation:

• In mixing: rate of $D^0 \rightarrow D^0$ bar and D^0 bar $\rightarrow D^0$ differ

In decay: amplitudes for a process and its conjugate differ

• In interference between mixing and decay diagrams

- In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates
 - Exactly how small is a matter of debate... but for sure well below present limit of several x 10^{-3}
- Direct CP violation can be larger in SM, very dependent on final state (therefore we must search wherever we can)
 In singly-Cabibbo-suppressed modes (10⁻⁴) plausible, O(10⁻³) possible
- Both can be enhanced by NP, in principle up to O(%)

Bianco, Fabbri, Benson & Bigi, Riv. Nuovo. Cim 26N7 (2003) Grossman, Kagan & Nir, PRD 75, 036008 (2007) Bigi, arXiv:0907.2950

Bobrowski, Lenz, Riedl & Rorhwild, JHEP 03 009 (2010) Bigi, Blanke, Buras & Recksiegel, JHEP 0907 097 (2009)

CPV in charm not yet seen experimental

Indirect

irect

Where to look for direct CPV

- Remember: need (at least) two competing amplitudes with different strong and weak phases to get CPV.
- Cabibbo-favoured modes not interesting
 - Tree-level SM contribution swamps everything else
- Singly-Cabibbo-suppressed modes with gluonic penguin diagrams very promising

 $O(10^{-5} - 10^{-5})$

CLEO-c study with 818 pb⁻¹: <u>Phys. Rev. D78 (2008) 072003</u> BABAR study of 80 fb⁻¹: <u>Phys. Rev. D71 (2005) 091101 (R)</u>

$D^+ \rightarrow K^- K^+ \pi^+$

Paper in preparation.

Mass spectra after selection

Technique

- Model-independent search for CPV in Dalitz plot distribution
- Compare binned, normalized Dalitz plots for D⁺, D⁻
 - Production asymmetry etc cancels completely after normalization.
 - Efficiency asymmetries that are flat across Dalitz plot also cancel.
- Method based on "Miranda" approach -- asymmetry significance
 - In absence of asymmetry, values distributed as Gaussian(μ =0, σ =1)
 - Figure of merit for statistical test: sum of squares of Mirandas is a χ^2 .

Strategy

- Blind analysis: check no fake asymmetries in control modes, simulation before looking in signal box.
- Verify with toy studies that statistical procedure is sound
 - When generating events with no CP asymmetry, none is detected.
 - When generating with an asymmetry, it is detected (if large enough)
- Key control samples:
 - $D_s^+ \rightarrow K^- K^+ \pi^+$ control mode (very powerful!)
 - $K^- K^+ \pi^+$ sidebands
 - K⁻ π^+ π^+ control mode (much uglier & harder than our signal mode)
- Combine the two magnet polarities to cancel various small left-right asymmetries.
- Try a variety of binnings (sensitive to range of CPV scenarios).

$D_s^+ \rightarrow K^- K^+ \pi^+ \text{ control mode}$

- For MagUp: χ^2 /NDF = 16.0 / 24 (88.9%)
- For MagDown: χ^2 /NDF = 31.0 / 24 (15.5%)
- Combined: χ^2 /NDF = 26.2 / 24 (34.4%) Preliminary: 2010 data, 38 pb⁻¹
- Great! No evidence of any fake asymmetry in control mode.

Other $K^-K^+\pi^+$ control modes

$K^-\pi^+\pi^+$ control modes

- $D^+ \rightarrow K^- \pi^+ \pi^+$ behaves amazingly well. Remember:
 - there is a mechanism for a fake asymmetry that doesn't apply to the signal mode (kaon efficiency)
 - the statistics are 10x larger than in the signal mode

Method of comparing normalized Dalitz plots very robust against systematic effects.

Further tests

- Toy study with simulated K⁺/K⁻ efficiency asymmetry
- Numerous other binning schemes
 - ... in particular using uniform (square) binnings
 - Understand stability, check for highly local asymmetries
- Check for background effects with cut variation:
 - Tighten hadron ID cuts to probe charm backgrounds
 - Vary D pointing cut to probe D-from-B contamination
 - Vary trigger criteria
 - Test subsamples with different running conditions
- Run analysis on GEANT4 Monte Carlo events
 - Caveat: we have much more abundant data than full MC!
- Everything checks out.
- Any asymmetry seen in D⁺ \rightarrow K⁻ K⁺ π^+ Dalitz plot is likely to be a real physics effect.

Results for $D^+ \rightarrow K^- K^+ \pi^+$

... but there is much more to come

$D^0 \rightarrow K^- K^+, \pi^- \pi^+$

LHCb-CONF-2011-023

Formalism

- ... so when we take $A_{RAW}(f)^* A_{RAW}(f')^*$ the production and soft pion detection asymmetries will cancel. Moreover...
- No detector asymmetry for D⁰ decays to (K⁺ K⁻), ($\pi^+ \pi^-$)

... i.e. all the D^{*}-related production and detection effects cancel. This is why we measure the CP asymmetry difference: very robust against systematics.

Shorthand: $\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$

Fits to the data

- Divide data up according to magnet polarity, trigger conditions.
- Fit (Δm + constant). Here are two example fits:

Total signal yield: I 16k tagged $D^0 \rightarrow K^+ K^-$ 36k tagged $D^0 \rightarrow \pi^+ \pi^-$

Systematics & preliminary result

Effect	Uncertainty
Modeling of lineshapes	0.06%
D^0 mass window	0.20%
Multiple candidates	0.13%
Binning in (p_t, η)	0.01%
Total systematic uncertainty	0.25%
Statistical uncertainty (for compariso	on) 0.70 %
data, 38 pb ⁻¹	
-	Effect Modeling of lineshapes D^0 mass window Multiple candidates Binning in (p_t, η) Total systematic uncertainty Statistical uncertainty (for comparison data, 38 pb ⁻¹

$$A_{CP}(KK) - A_{CP}(\pi\pi) = (-0.275 \pm 0.701 \pm 0.25)\%$$

- Note: already competitive with the B-factories!
 - Statistical error for BABAR 0.62%, Belle 0.60%
 - But for CDF: 0.33%
- Expect systematic error to scale well with integrated lumi.
 - Estimates very conservative, with large statistical component.

Preliminary:

Interpretation

- PRELIMINARY average courtesy of HFAG (thanks!)
- Slope in LHCb result due to small KK/ $\pi\pi$ lifetime acceptance difference: $\Delta < t > /\tau = 0.10 \pm 0.01$

Mixing & indirect CPV

Conference note in preparation (LHCB-CONF-2011-029)

Time-dependent charm at LHCb

- This is just a teaser!
- Two analyses with public control results:
 - Measurement of mixing parameter y_{CP} and search for indirect CPV (A_Γ) in lifetime of $D^0 \rightarrow K^- K^+, K^- \pi^+$
 - Measurement of mixing parameters (y', x'^2) and search for indirect CPV in time-dependent rate of $D^0 \rightarrow K^+ \pi^-$ LHCB-CONF-2011-029
- A_{Γ} unblinded yesterday with 2010 data
 - ... but came too late for this talk -- you will have to wait for Guy's plenary for the result!
- Instead, control measurement...

Conclusions & prospects

- Charm physics at LHCb is off to a great start.
 - Search for CPV in D⁺ \rightarrow K⁻ K⁺ π^+
 - Measurement of $[A_{CP}(D^0 \rightarrow K^+K^-) A_{CP}(D^0 \rightarrow \pi^+\pi^-)]$
- 2010 data already interesting: even with 38 pb⁻¹, already competitive with B-factories.
- ... and now an order of magnitude more on tape!
 - Many improvements to the software trigger for charm
 - Dedicated lines for key modes: D \rightarrow hh, hhh, hhhh, K_sh, K_shh, µµ, hµµ, hhµµ
- Look forward to more 2010 results
 - A_{Γ} result next week
 - Time-dependent measurements of mixing, CPV
 - Rare decay searches
- ... and then precision searches for CP violation and new physics with the 2011 data and beyond.

fin

More control channel tests

Sample	Binning	p-value
Ds -> K- K+ π+ (phi region)	335 square bins	20.1%
Ds -> K- K+ π+ (phi region)	124 square bins	41.7%
Ds -> K- K+ π+ (phi region)	30 square bins	66.0%
Ds -> K- K+ π+ (K*(892) region)	360 square bins	25.3%
Ds -> K- K+ π+ (K*(892) region)	116 square bins	84.6%
Ds -> K- K+ π+ (K*(892) region)	32 square bins	62.5%
Ds -> K- K+ π+ (middle region)	350 square bins	14.5%
Ds -> K- K+ π+ (middle region)	105 square bins	89.5%
Ds -> K- K+ π+ (middle region)	28 square bins	24.6%

More control channel tests

Sample	Binning	p-value
D+ -> K- π+ π+	1381 square bins	73.8%
D+ -> K- π+ π+	865 square bins	17.7%
D+ -> K- π+ π+	438 square bins	72.7%
D+ -> K- π+ π+	118 square bins	54.6%
D+ -> K- π+ π+	1272 adaptive bins	81.7%
D+ -> K- π+ π+	876 adaptive bins	57.4%
D+ -> K- π+ π+	391 adaptive bins	65.8%
D+ -> K- π+ π+	97 adaptive bins	30.0%

Comparison with CLEO, BABAR

CLEO-c (818/pb) Yield of 19k Purity of 84%

BABAR (80/fb) Yield of 43k Purity about 66%

LHCb (38/pb) Yield of 370k in window Purity of 91.5%

CLEO-c result

	Magnitude	Phase $(^{\circ})$	Fit Fraction (%)	200
	Fit A $[\chi^2/d.o.$	f. $= 898/708$]		CLEO-c data
\overline{K}^{*0}	1(fixed)	0(fixed)	$25.0 \pm 0.6^{+0.4+0.2}_{-0.3-1.2}$	~ 2.75
$\overline{K}_{0}^{*}(1430)^{0}$	$3.7 \pm 0.5^{+0.5+1.0}_{-0.1-1.0}$	$73 \pm 9^{+6+15}_{-6-38}$	$12.4 \pm 3.3^{+3.4+7.3}_{-0.7-5.8}$	
ϕ	$1.189 \pm 0.015^{+0.000+0.028}_{-0.011-0.010}$	$-179 \pm 4^{+3+13}_{-1-5}$	$28.1 \pm 0.6^{+0.1+0.2}_{-0.3-0.4}$	0 2.25 - (-)
$a_0(1450)^0$	$1.72 \pm 0.10^{+0.11+0.81}_{-0.11-0.28}$	$123 \pm 3^{+1+9}_{-1-15}$	$5.9 \pm 0.7^{+0.7+6.7}_{-0.6-1.8}$	
$\phi(1680)$	$1.9 \pm 0.2^{+0.0+1.3}_{-0.1-0.7}$	$-52 \pm 8^{+0+10}_{-5-26}$	$0.51 \pm 0.11^{+0.02+0.85}_{-0.04-0.12}$	$\stackrel{+}{\times}_{175} \stackrel{+}{\vdash}$
$\overline{K}_{2}^{*}(1430)^{0}$	$6.4 \pm 0.9^{+0.5+1.9}_{-0.4-3.6}$	$150 \pm 6^{+1+28}_{-0-13}$	$1.2 \pm 0.3^{+0.2+0.8}_{-0.1-0.6}$	$\overline{\mathbf{Y}}$
NR	$5.1 \pm 0.3^{+0.0+0.6}_{-0.3-0.2}$	$53 \pm 7^{+1+18}_{-5-11}$	$14.7 \pm 1.8^{+0.2+3.9}_{-1.6-1.5}$	
	Total Fit Fraction	$n = (88.7 \pm 2.9)$	%	
0	Fit B $[\chi^2/d.o.$	f. $= 895/708$]		1.00 -
\overline{K}^{*0}	1(fixed)	0(fixed)	$25.7 \pm 0.5^{+0.4+0.1}_{-0.3-1.2}$	
$\overline{K}_{0}^{*}(1430)^{0}$	$4.56 \pm 0.13^{+0.10+0.42}_{-0.01-0.39}$	$70 \pm 6^{+1+16}_{-6-23}$	$18.8 \pm 1.2^{+0.6+3.2}_{-0.1-3.4}$	$m^2(K^-\pi^+)$ (GaV2)
ϕ	$1.166 \pm 0.015^{+0.001+0.025}_{-0.009-0.009}$	$-163 \pm 3^{+1+14}_{-1-5}$	$27.8 \pm 0.4^{+0.1+0.2}_{-0.3-0.4}$	
$a_0(1450)^0$	$1.50 \pm 0.10^{+0.09+0.92}_{-0.06-0.33}$	$116 \pm 2^{+1+7}_{-1-14}$	$4.6 \pm 0.6^{+0.5+7.2}_{-0.3-1.8}$	Yield ~ 20k signal
$\phi(1680)$	$1.86 \pm 0.20^{+0.02+0.62}_{-0.08-0.77}$	$-112 \pm 6^{+3+19}_{-4-12}$	$0.51 \pm 0.11^{+0.01+0.37}_{-0.04-0.15}$	Purity∿~ 84%
$\overline{K}_{2}^{*}(1430)^{0}$	$7.6 \pm 0.8^{+0.5+2.4}_{-0.6-4.8}$	$171 \pm 4^{+0+24}_{-2-11}$	$1.7 \pm 0.4^{+0.3+1.2}_{-0.2-0.7}$	
$\kappa(800)$	$2.30 \pm 0.13^{+0.01+0.52}_{-0.11-0.29}$	$-87 \pm 6^{+2+15}_{-3-10}$	$7.0 \pm 0.8^{+0.0+3.5}_{-0.6-1.9}$	Mausa this model
	Total Fit Fraction	$n = (86.1 \pm 1.1)$	%	
.0	Fit C [χ^2 /d.o.	f. $= 912/710$]		for our toy MG /
\overline{K}^{*0}	1(fixed)	0(fixed)	$25.3 \pm 0.5^{+0.2+0.2}_{-0.4-0.7}$	
LASS	$3.81 \pm 0.06^{+0.05+0.13}_{-0.05-0.46}$	$25.1 \pm 2^{+1+6}_{-2-5}$	$40.6 \pm 0.8^{+0.4+1.6}_{-0.5-9.1}$	
ϕ	$1.193 \pm 0.015^{+0.003+0.021}_{-0.010-0.011}$	$-176 \pm 2^{+0+8}_{-2-8}$	$28.6 \pm 0.4^{+0.2+0.2}_{-0.3-0.5}$	
$a_0(1450)^0$	$1.73 \pm 0.07^{+0.14+0.68}_{-0.03-0.38}$	$122 \pm 2^{+1+8}_{-1-10}$	$6.0 \pm 0.4^{+0.9+5.5}_{-0.2-2.4}$	
$\phi(1680)$	$1.71 \pm 0.16^{+0.02+0.41}_{-0.02-0.77}$	$-72 \pm 8^{+2+10}_{-2-22}$	$0.42 \pm 0.08^{+0.02+0.19}_{-0.01-0.16}$	
$\overline{K}_{2}^{*}(1430)^{0}$	$4.9 \pm 0.7^{+0.1+2.2}_{-0.4-2.3}$	$146 \pm 9^{+0+34}_{-7-11}$	$0.7 \pm 0.2^{+0.0+0.7}_{-0.1-0.3}$	Phys. Rev. D 78 (2008) 072003
	Total Fit Fraction	$=(101.5\pm0.8)$)%	

Adaptive binning II

Recent measurements (HFAG)

Year	Experiment	CP Asymmetry in the decay mode D0 to $\pi+\pi$ -	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2010	CDF	M.J. Morello (CDF Collab.), Preprint (CHARM 2010).	$+0.0022 \pm 0.0024 \pm 0.0011$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 2008).	$+0.0043 \pm 0.0052 \pm 0.0012$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$-0.0024 \pm 0.0052 \pm 0.0022$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.019 \pm 0.032 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.039 \pm 0.025$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.049 \pm 0.078 \pm 0.030$
		COMBOS average	$+0.0020 \pm 0.0022$

Year	Experiment	CP Asymmetry in the decay mode D0 to K+K-	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2011	CDF	A. Di Canto (CDF Collab.), Preprint (BEAUTY 2011).	$-0.0024 \pm 0.0022 \pm 0.0010$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 (2008).	$-0.0043 \pm 0.0030 \pm 0.0011$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$+0.0000 \pm 0.0034 \pm 0.0013$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.000 \pm 0.022 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$-0.001 \pm 0.022 \pm 0.015$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.010 \pm 0.049 \pm 0.012$
1995	CLEO	J.E. Bartelt et al. (CLEO Collab.), Phys. Rev. D 52, 4860 (1995).	+0.080 ± 0.061
1994	E687	P.L. Frabetti et al. (E687 Collab.), Phys. Rev. D 50, 2953 (1994).	+0.024 ± 0.084
•		COMBOS average	-0.0023 ± 0.0017

CDF leads the pack, especially for $D^0 \rightarrow \pi^+ \pi^-$ High-energy hadron colliders are great places to produce charm.

Bonus: D⁰ production asymmetry

... so if we use measurements of $D^0 \rightarrow K^- K^+ CP$ asymmetry from other experiments as input, we can extract overall D^0 production asymmetry at LHCb. (Similarly $\pi^- \pi^+$.)

We obtain:

$$A_P(D^0) = (-1.08 \pm 0.32 \pm 0.12)\%.$$

Preliminary: 2010 data, 38 pb⁻¹

Prompt-secondary discrimination

Prompt charm:

D points to primary vertex Daughters of D don't in general

Secondary charm:

D doesn't point to PV in general

 y_{CP} and A_{Γ} in time-dep. $D^0 \rightarrow K^- K^+, K^- \pi^+$

- Swimming technique developed at Tevatron.
- Ideally suited to LHCb where our software trigger can be recreated exactly offline.

Trying to measure how acceptance varies with lifetime candidate-bycandidate.

... so that we can pull it directly from the data instead of having to model it on signal MC.

Ideally, would shift D⁰ decay vertex, but this is a nightmare (imagine trying to move VELO hits).

Instead, shift primary vertex in opposite sense (*nearly* the same thing; systematic for difference)

Time-integrated wrong-sign $D^0 \rightarrow K\pi$

Three contributions with different lifetime dependence:

$$\Gamma_{WS}(t) = e^{-\Gamma t} \left(\underbrace{R_D + y' \sqrt{R_D}(\Gamma t)}_{\text{DCS} \text{ Interference}} + \underbrace{\frac{x'^2 + y'^2}{4}}_{\text{Mixing}} (\Gamma t)^2 \right)$$

Our lifetime acceptance is

- Start with raw WS/RS time-integrated ratio.
- Determine our efficiency(t) using PDG D0 lifetime as input
- Determine correction using HFAG mixing parameters as input
- Compute lifetime-acceptance-corrected WS/RS ratio.

	WS/RS of $D \to K\pi$ decays (%)
$R_{measured}$	$0.442 \pm 0.033 \; (stat.) \; \pm 0.042 \; (sys.)$
R_{acccor}	$0.409 \pm 0.031 \ (stat.) \ \pm 0.039 (sys.) \ ^{+0.028}_{-0.020} \ (sys. \ mixing)$
R(PDG)	0.380 ± 0.018

LHCB-CONF-2011-029

Cross-check consistent with PDG average.

