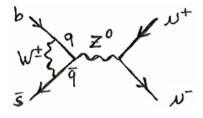
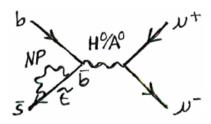
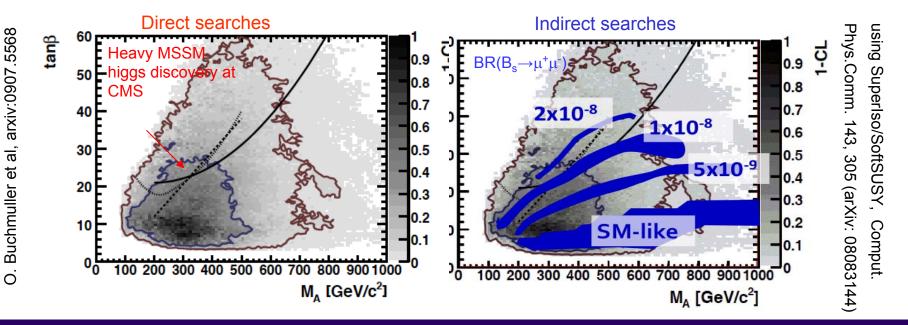

Search for the very rare decays $B_{s/d} \rightarrow \mu^+ \mu^-$ at LHCb

Justine Serrano

Centre de Physique des Particules de Marseille On behalf of the LHCb collaboration

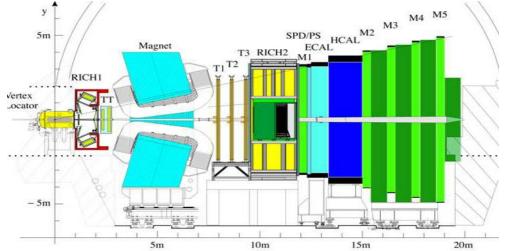

EPS-HEP, July 22th 2011, Grenoble


Interest of $B_{s/d} \rightarrow \mu^+ \mu^-$


- FCNC and helicity suppressed decays
- Precise SM prediction:
 - BR(B_s $\rightarrow \mu^{+}\mu^{-}$)= (3.2±0.2) x10⁻⁹
 - BR(B_d $\rightarrow \mu^{+}\mu^{-}$)= (1.1±0.1) x10⁻¹⁰

A.J.Buras: arXiv:1012.1447, E. Gamiz et al: Phys.Rev.D 80 (2009) 014503

 BR very sensitive to new physics Ex: NUHM1 model



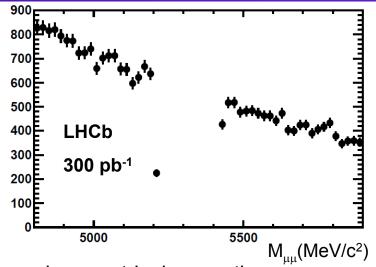
$B_{s/d} \rightarrow \mu^+ \mu^- \text{ at LHCb}$

LHCb benefit from:

- Large bb cross section
- Large acceptance for B decays
- Very efficient muon trigger, good particle ID, tracking and reconstruction

LHCb already published one analysis based on 37 pb⁻¹ from 2010 data *Physics Letter B 699 (2011)330-340*

Observed BR($B_s \rightarrow \mu^+ \mu^-$) < 4.3 x 10⁻⁸ (5.6 x 10⁻⁸) @ 90 (95)% CL Expected: 5.1 (6.5)


Observed BR($B_d \rightarrow \mu^+ \mu^-$) < 1.2 x 10⁻⁸ (1.5 x 10⁻⁸) @ 90 (95)% CL Expected: 1.4 (1.8)

Here we present an update on 300 pb⁻¹ from 2011 data

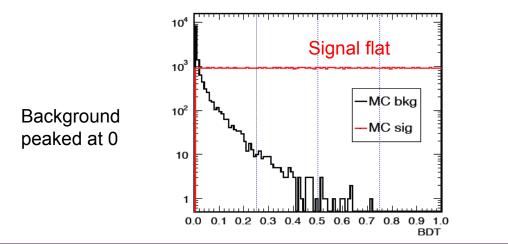
Assuming SM, we expect after selection 3.2 (0.32) B_s (B_d) events in 300 pb⁻¹

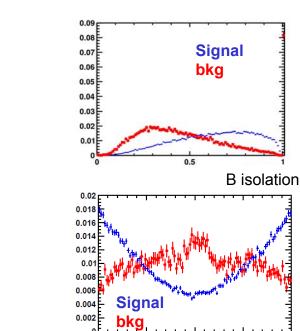
Analysis strategy

- Selection
 - muon-based trigger
 - Soft selection to reduce size of dataset
 - Similar to control channels
 - Blind signal region (M_{Bd}-60MeV, M_{Bs}+60MeV)
- Signal and background discrimination:
 - **NEW** boosted decision tree combining kinematic and geometrical properties
 - Invariant mass
- Data driven calibration through control channels to get signal and background expectations
- Translate number of observed events into branching fraction measurement by normalizing with channels of known BR
- Results:
 - Extract observation / exclusion measurement using the modified frequentist CLs method in bins of mass and BDT

Justine Serrano

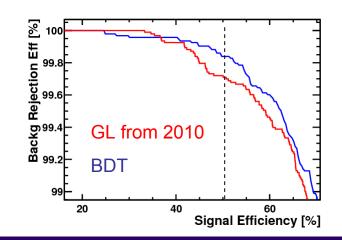
Boosted decision tree

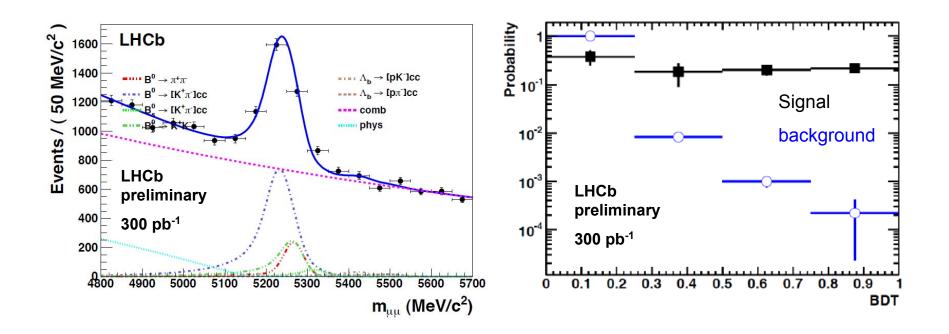

Already in


previous

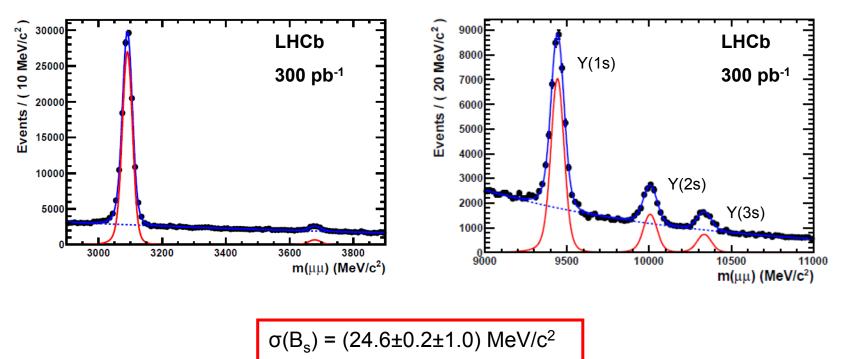
analysis

New


- Use 9 input variables:
 - B impact parameter, B lifetime, muon isolation, DOCA, B Pt, minimum impact parameter of the muons
 - B isolation
 - Polarization variable
 - Minimum Pt of the muons
- Choice of variables to avoid correlation with invariant mass
- Optimization and training on MC, using $B_s \rightarrow \mu^+ \mu^$ and $bb \rightarrow \mu \mu X$ background

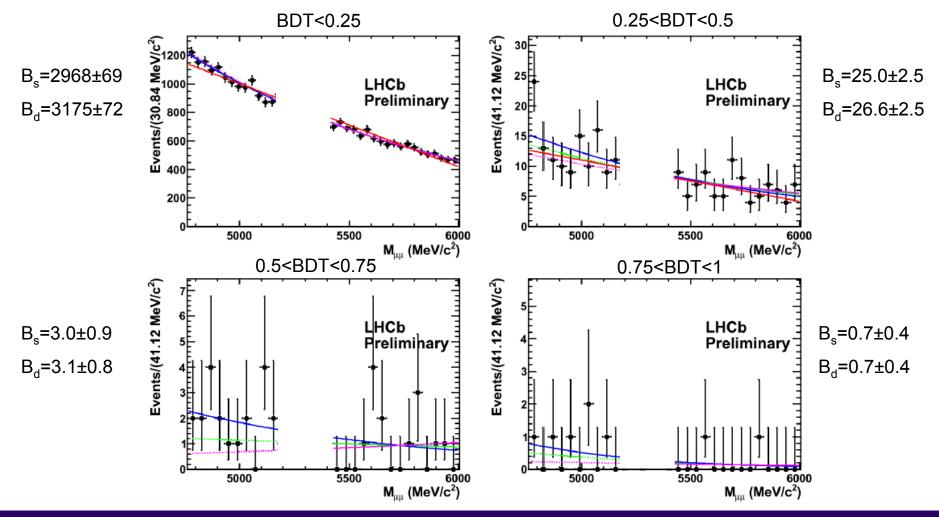

-0.5

Polarization


Calibration of BDT

- For the signal we use data $B_{d/s} \rightarrow h^+h^-$
 - Same topology as $B_s \rightarrow \mu^+ \mu^-$
 - However are selected by hadronic triggers that can bias the shape of variables
 → Use only events triggered independently of the signal (TIS)
- Background: data sidebands

Calibration of invariant mass


- Invariant mass: modeled by a Crystal Ball
 - Resolution: use interpolation of dimuon resonances (J/ ψ , ψ (2s), Y's), crosschecked with inclusive and exclusive $B_{d/s} \rightarrow h^+h^-$
 - Mean: from exclusive $B_s \to K^* K^{\scriptscriptstyle -}$ and $B^0 \to K^* \pi^{\scriptscriptstyle -}$

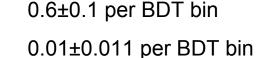
$$\sigma(B_d) = (24.3 \pm 0.2 \pm 1.0) \text{ MeV/c}^2$$

Background expectation I

- Combinatorial background expectation extracted from a fit to the mass sidebands in bins of BDT
- Systematics evaluated using different fit functions and ranges

Background expectation II

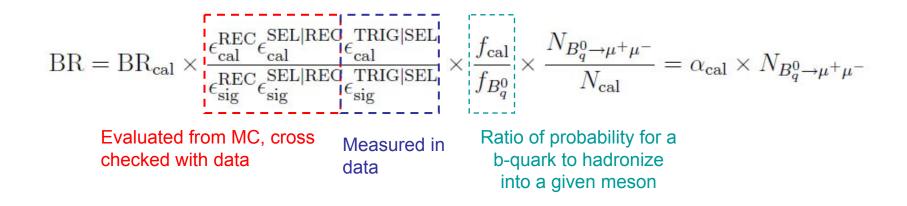
- Most of background is due to real muons from $bb \rightarrow \mu\mu X$ events
- Also found a bkg component coming from photoproduction
 - Isolated muons, possible high mass
 - But very low Pt
 - efficiently removed by pT(B)> 500 MeV/c

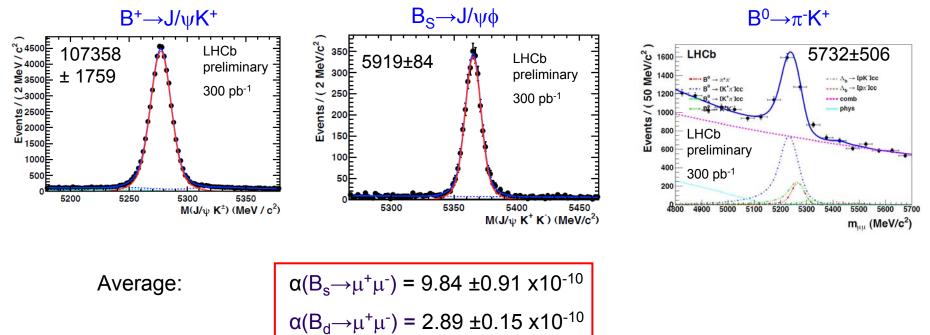


- Evaluated from $B_{d/s} \to h^{\scriptscriptstyle +} h^{\scriptscriptstyle -}$ MC reweighted according to misID probablity measured in data
- Cross checked with $B_{d/s} \rightarrow h^+h^-$ data, requiring one muon in the final state

We expect:

 2.5 ± 0.5 misID events in B_d region


 0.5 ± 0.4 misID events in B_s region


1 ner BDT hin

μ-

Normalization

3 normalization channels used:

Justine Serrano

fs/fd

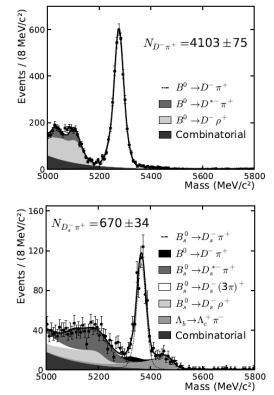
- Previously we used the HFAG average from LEP/Tevatron.
 Better to use the value corresponding to the LHC energy.
- fs/fd is measured at LHCb with hadronic decays

•
$$B^{0} \rightarrow D^{-}K^{+} \text{ and } B_{s} \rightarrow D_{s}^{-}\pi^{+}$$

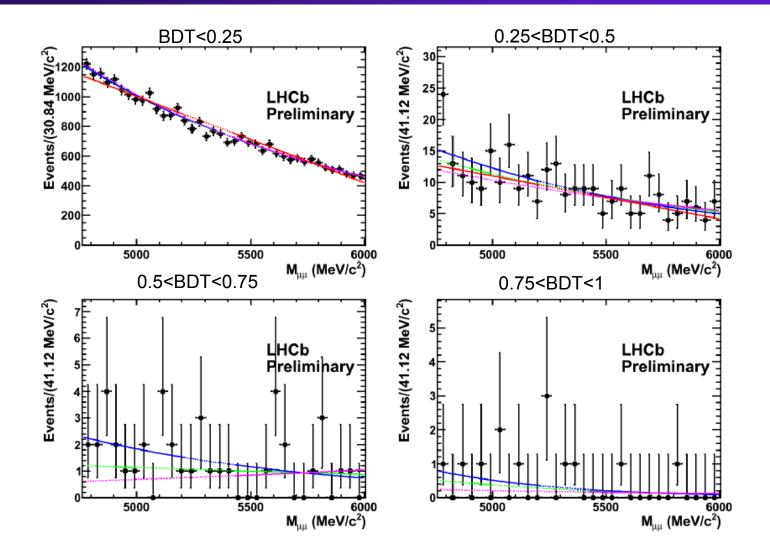
 $\frac{f_{s}}{f_{d}} = 0.250 \pm 0.024_{stat} \pm 0.017_{syst} \pm 0.017_{theo}$

•
$$B^{0} \rightarrow D^{-}\pi^{+} \text{ and } B_{s} \rightarrow D_{s}^{-}\pi^{+}$$

 $f_{s}/f_{d} = 0.256 \pm 0.014_{stat} \pm 0.019_{syst} \pm 0.026_{theo}$

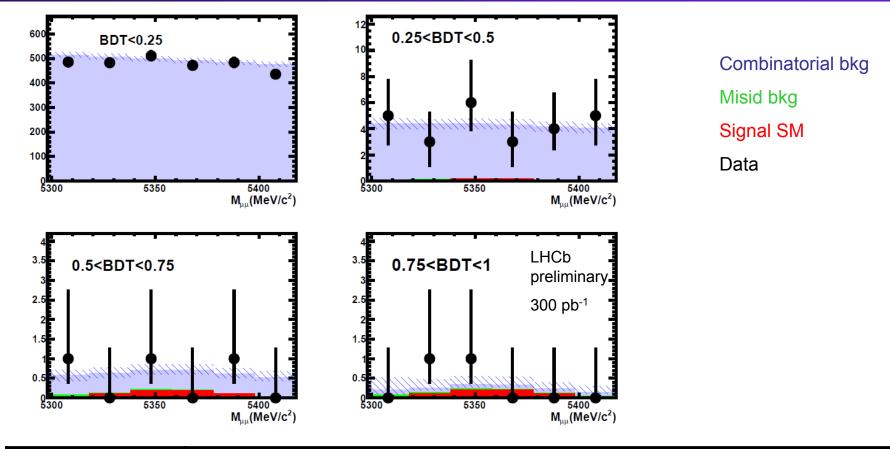

And semileptonic decays (preliminary, see talk by M. Artuso)

$$\frac{f_s}{f_d + f_u} = 0.134 \pm 0.004^{+0.011}_{-0.010}$$


 We compute the average: lhcb-conf-2011-034

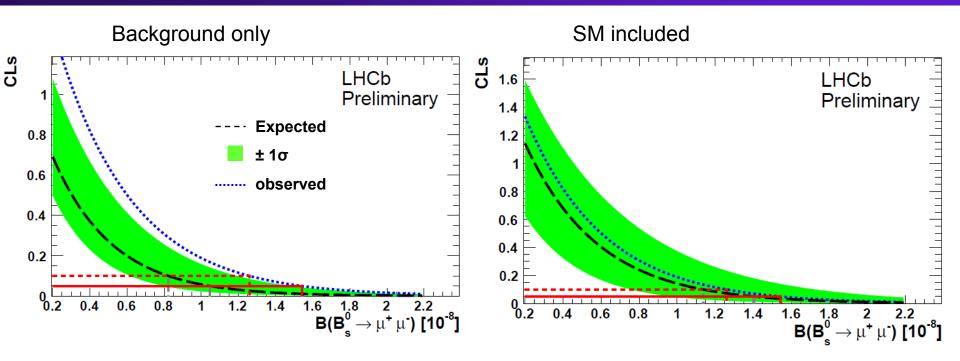
$$\frac{f_s}{f_d} = 0.267^{+0.021}_{-0.020}$$

arXiv:1106.4435 submitted to PRL

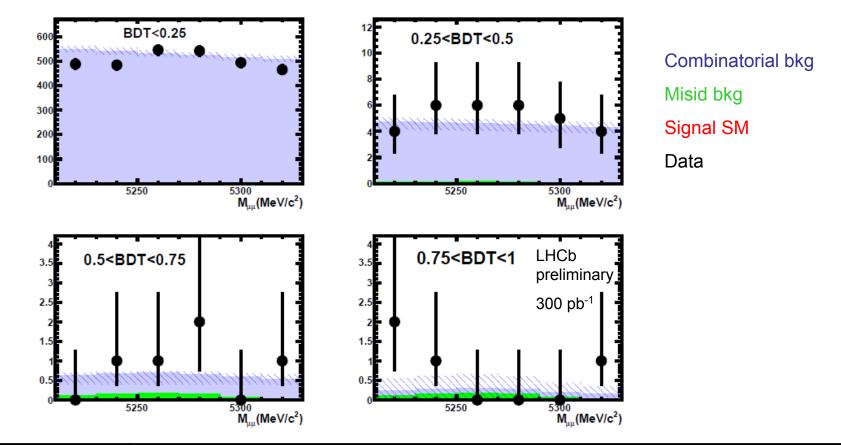


Open the box

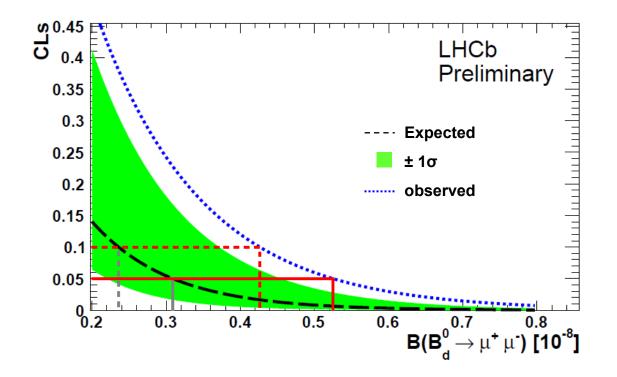
No excess seen


B_s region

	BDT<0.25	0.25 <bdt<0.5< th=""><th>0.5<bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<></th></bdt<0.5<>	0.5 <bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<>	0.75 <bdt< th=""></bdt<>
Exp.combinatorial	2968 ± 69	25 ± 2.5	2.99 ± 0.89	0.66 ± 0.40
Exp. SM signal	1.26 ± 0.13	0.61 ± 0.06	0.67 ± 0.07	0.72 ± 0.07
Observed	2872	26	3	2


misID background : 0.01±0.011 per bin

Limit on BR($B_s \rightarrow \mu^+ \mu^-$)

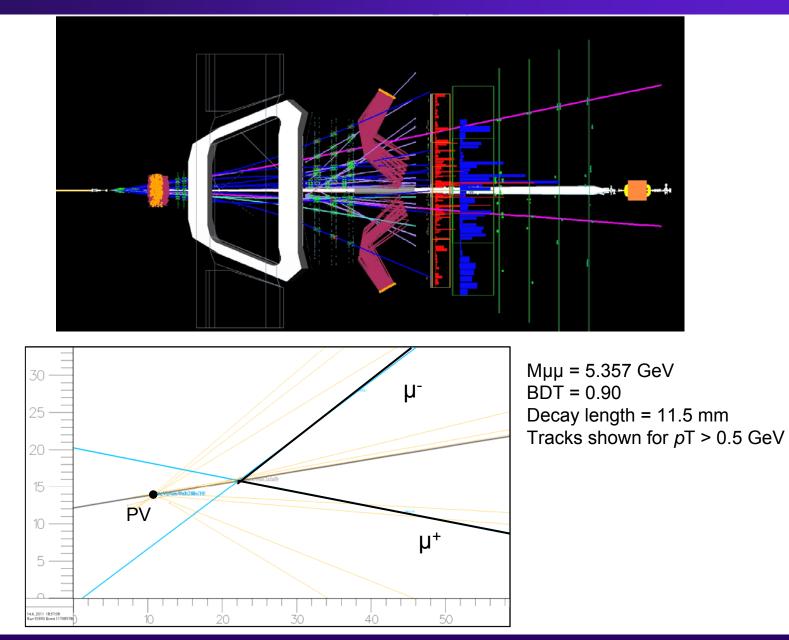

	Bkg only 90 (95) %CL	SM signal 90 (95) %CL	CLb
Expected stat+syst	0.8 (1.0) x10 ⁻⁸	1.2 (1.5) x10 ⁻⁸	
Observed stat+syst	1.3 (1.6) x10 ⁻⁸		0.86

B_d region

	BDT<0.25	0.25 <bdt<0.5< th=""><th>0.5<bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<></th></bdt<0.5<>	0.5 <bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<>	0.75 <bdt< th=""></bdt<>
Exp.combinatorial	3175 ± 72	26.6 ± 2.5	3.1 ± 0.8	0.7 ± 0.4
Exp. MisID	0.6± 0.1	0.6± 0.1	0.6± 0.1	0.6± 0.1
Observed	3025	31	5	4

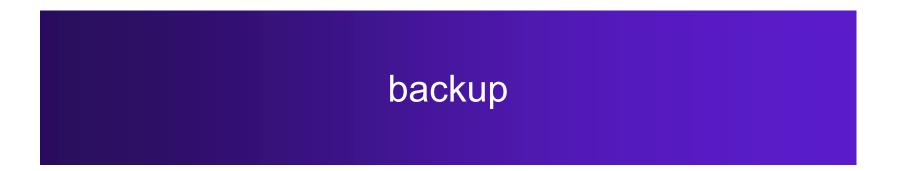
Limit on BR($B_d \rightarrow \mu^+ \mu^-$)

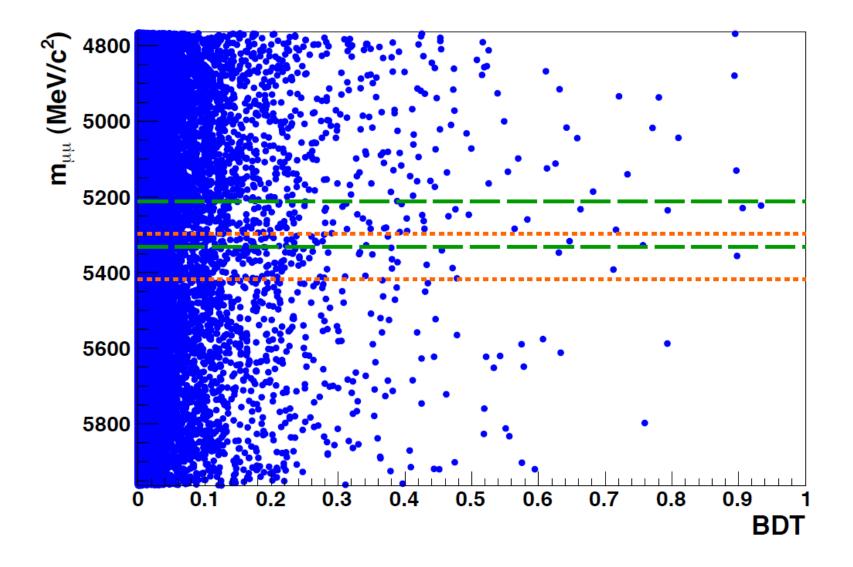
	Bkg only 90(95) %CL	CLb
Expected stat+syst	2.4 (3.1) x10 ⁻⁹	
Observed stat+syst	4.2 (5.2) x10 ⁻⁹	0.90

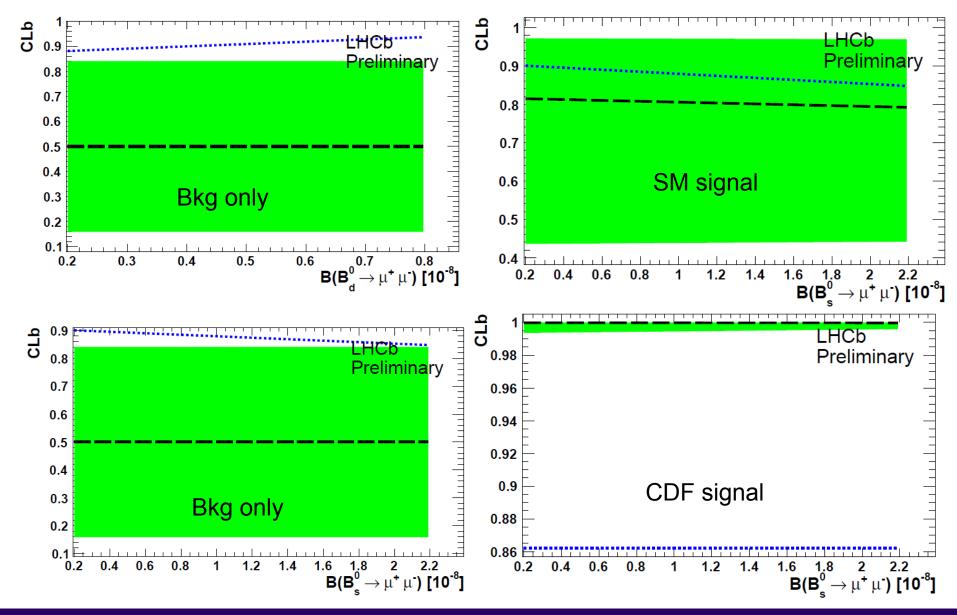

Summary

• LHCb presents new preliminary results with 300pb⁻¹ on BR($B_{s/d} \rightarrow \mu^+ \mu^-$)

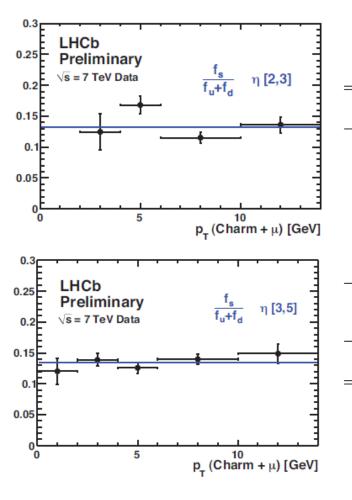
 $BR(B_{s} \rightarrow \mu^{+}\mu^{-}) < 1.3 \times 10^{-8} (1.6 \times 10^{-8}) @ 90 (95)\% CL$ $BR(B_{d} \rightarrow \mu^{+}\mu^{-}) < 4.2 \times 10^{-9} (5.2 \times 10^{-9}) @ 90 (95)\% CL$


- Combined results with 2010 data (37pb⁻¹): BR(B_s→µ⁺µ⁻) < 1.2 (1.5) x10⁻⁸ @ 90 (95)% CL
- We do not confirm the excess seen by CDF


A nice signal candidate!

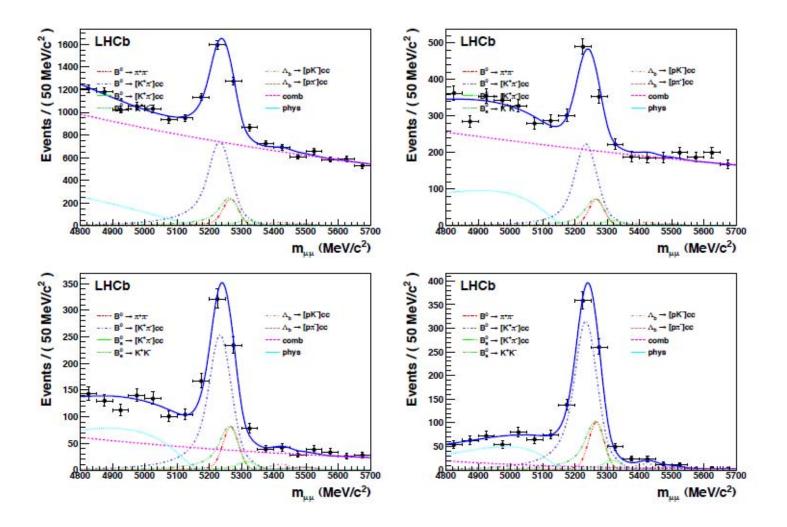

Bs2MuMu @ LHCb

Justine Serrano

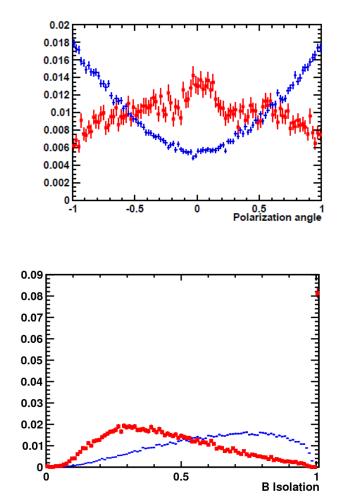


CLb

fs/fd


Independance versus η checked with semileptonic decays

Summary of systematics and theoretical errors of the 3 LHCb measurements

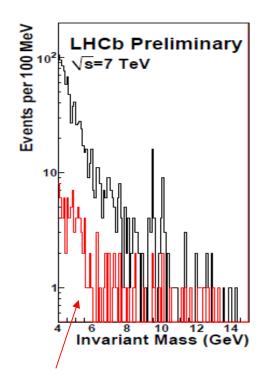

Source		Error(%)		
Source	(f / f)		(f f)	
	$(f_s/f_d)_{\rm sl}$	$(f_s/f_d)_{\rm h1}$	$(f_s/f_d)_{\rm h1}$	
Bin dependent error	1.0	-	-	Uncorrelated
Semileptonic decay modelling	3.0	-	-	Uncorrelated
Backgrounds	2.0	-	-	Uncorrelated
Fit model	-	2.8	2.8	Uncorrelated
Trigger Simulation	-	2.0	2.0	Uncorrelated
Tracking Efficiency	2.0	-	-	Uncorrelated
$B^0_s \to D^0 K^+ X \mu \overline{\nu}_\mu$	$^{+4.1}_{-1.1}$	-	-	Uncorrelated
Particle Identification Calibration	1.5	1.0	2.5	Correlated
D Lifetimes	1.5	1.5	1.5	Correlated
$\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)$	4.9	4.9	4.9	Correlated
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^-)$	1.5	1.5	1.5	Correlated
SU(3) and form factors		6.1	6.1	Correlated (had)
W-exchange	-	-	7.8	Uncorrelated

BDT calibration

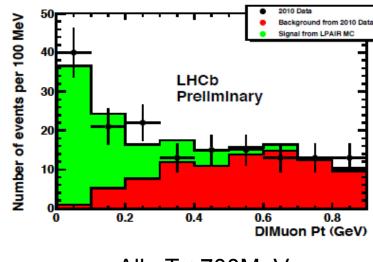
New variables

Angle between the vector perpendicular to both the beam and the B momenta, and the muon momenta in the B rest frame

For signal ~polarization modula pi/2


$$pT_B/(pT_B+\Sigma_{\vartheta,\varphi}pT_{tr})$$

Summing on the tracks for which


$$\sqrt{\delta\eta^2 + \delta\phi^2} < 1.0$$

Photoproduction background

LHCb-CONF-2011-022

Event containing only 2 muons

All pT< 700MeV

These events can look like signal if they are associated to a wrong PV

Cut a B(PT)>500 MeV removes ~100% of this background but only 1.8% of signal

Normalization

B[±]→J/ψ(μμ) K[±]

BR = 6.01×10^{-5} (±3.5%)

- Similar trigger and PID
- Tracking efficiency (+1track) dominates error on efficiency ratio
- f_d/f_s dominates overall uncertainty

- B_s →J/ψ(μμ) φ(KK)
- BR = 3.35×10⁻⁵ (±26%)
- Similar trigger and PID
- Tracking efficiency (+2tracks) dominates error on efficiency ratio
- BR dominates overall uncertainty

B⁰→**K**⁺π⁻

BR = 1.94×10⁻⁵ (±3.1%)

- Different trigger
 → use events triggered
 independent of signal
- Identical topology
- Uncertainty from f_d/f_s, trigger, mass fit

	α(B _s →μμ) 10 ⁻⁹	α(B⁰→μμ) 10 ⁻¹⁰
$B^{\pm} {\color{red} \rightarrow} J/\psi \; K^{\pm}$	1.0±0.1	2.58±0.16
$B_s \rightarrow J/\psi \phi$	1.3±0.4	3.4±1.0
B ⁰ →K ⁺ π ⁻	0.92±0.14	2.46±0.32