## Charmonium and X, Y at Belle

Anna Vinokurova BINP, Novosibirsk, Russia

- X(3872)
  - mass & width determination, BR  $J/\psi \pi^+\pi^-$  mode
  - angular analysis
  - radiative decays
- Y(4260)
  - search in J/ψπ<sup>0</sup>π<sup>0</sup> channel
- $\eta_c$  and  $\eta_c(2S)$ 
  - estimation of the interference effect

### Introduction

B-factories provide a great opportunity to study known charmonium states and discover new ones.

Since 2002 B-factories found more than 10 states that

- probably contain a (c anti-c) pair  $\Rightarrow$  "charmonium-like" states
- have mass above the open charm threshold
- are in poor agreement with the charmonium potential model

Exotic state models:

- Multiquark state
  - Molecule (two loosely bound charm mesons)
  - Tetraquark (tightly bound four-quark state)
- Hybrid (state with excited gluonic degrees of freedom)
- Hadrocharmonium (charmonium state "coated" by light-hadron matter)
- Threshold effects
  - Virtual state at threshold
  - Charmonium state shifted by nearby D<sup>(\*)</sup>D<sup>(\*)</sup> thresholds

None of these models explains all properties of observed exotic states!

# X(3872)

First observed by Belle[1] in 2003 in B $\rightarrow$ K(J/ $\psi\pi^+\pi^-$ ). Mass is close to the (D<sup>0</sup>anti-D<sup>\*0</sup>) threshold. Width is less than experimental resolution. Confirmed by BaBar, CDF, and D0.

Possible interpretations:



large  $\mathcal{B}(\chi_{c1}(2P) \rightarrow J/\psi\gamma)$  expected

large width expected



- Charmonium state
  - $\chi_{c1}(2P) \blacksquare$  $\eta_{c2} \blacksquare$
- D<sup>0</sup>anti-D<sup>\*0</sup> molecule most popular model **—** unexplained production in B decays and p anti-p
- (c anti-c) and (D<sup>0</sup>anti-D<sup>\*0</sup>) mixture
- Tetraquark (diquark-diantiquark)
   no charged partner of X found

There are two possibilities for quantum numbers

- $M(\pi^+\pi^-)$  close to  $\rho$  decay (Belle[2] and CDF[3])  $\oplus$  X(3872) $\rightarrow$ J/ $\psi\gamma$  (Belle[4] and Babar[5]) established C=+1
- $X \rightarrow J/\psi \pi^+ \pi^-$  (study by CDF[6])  $\Rightarrow 1^{++}$  or 2<sup>-+</sup>
- $X \rightarrow J/\psi\gamma$  (Belle and Babar[7]) favors 1<sup>++</sup>
- $X \rightarrow J/\psi \pi^+ \pi^- \pi^0$  (BaBar[8]) favors 2<sup>-+</sup> (?)
- Molecular state model  $\Rightarrow 0^{-+}$  or  $1^{++}$

#### Anna Vinokurova "Charmonium and X, Y, Z at Belle"

PRL 91 261001
 arXiv:hepex/0505038
 PRL 96 102002
 arXiv:1105.0177
 PRL 102 132001
 PRL 98 132002
 arXiv:1007.4541
 PRD 82 011101

# $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ (1) arXiv:1107.0163

Full Belle data sample: 711 fb<sup>-1</sup>

Diquark-antidiquark model predicts mass difference  $\Delta M_x$  on the X mass in the two modes

 $B^+ \rightarrow K^+(J/\psi \pi^+ \pi^-)$  and  $B^0 \rightarrow K^0(J/\psi \pi^+ \pi^-)$ .



 $X(3872) \rightarrow J/\psi \pi^+ \pi^0$ (2)



 $\mathcal{B}(B^0 \rightarrow K^- X^+) \times \mathcal{B}(X^+ \rightarrow \rho^+ J/\psi) < 4.2 \times 10^{-6}$ No evidence of a charged partner  $X^+$   $\mathcal{B}(B^+ \rightarrow K^0 X^+) \times \mathcal{B}(X^+ \rightarrow \rho^+ J/\psi) < 6.1 \times 10^{-6}$ 

### $X(3872) \rightarrow J/\psi \pi^{+}\pi^{-}(3)$ Angular correlations $(\theta_{x}^{*}, \chi, \theta_{1}) \Rightarrow 1^{++}$ and $2^{-+}$ hypotheses are both possible

(insufficient statistics).



 $X(3872) \rightarrow J/\psi \pi^+ \pi^-$  (4)

Fits to  $M(\pi^+\pi^-)$  distribution taking  $\rho-\omega$  interference into account  $\Rightarrow 1^{++}$  and  $2^{-+}$  hypotheses are both possible.



S-wave – dashed, P-wave - solid

# $X(3872) \rightarrow J/\psi(\psi')\gamma$

Molecular model  $\Rightarrow X \rightarrow \psi' \gamma$  is highly suppressed compared to  $X \rightarrow J/\psi \gamma$ . BaBar[1] results  $\Rightarrow \mathcal{B}(X \rightarrow \psi' \gamma)$  is 3 times larger than  $\mathcal{B}(X \rightarrow J/\psi \gamma)$ . Can be an indication of a (c anti-c) admixture (in addition to a (D<sup>0</sup>anti-D<sup>\*0</sup>) component).



Anna Vinokurova "Charmonium and X, Y, Z at Belle"

arXiv:1105.0177

# Y(4260)

 $\psi(2S)\pi^+\pi^-$ 

First observed by BaBar[1] in 2005 in  $e^+e^- \rightarrow (J/\psi \pi^+\pi^-)\gamma_{ISR}$ . Confirmed by Belle and CLEO.

Production in ISR  $\Rightarrow$  Y(4260) is a 1<sup>-</sup>state.

Family of 4 Y resonances (4008, 4260, 4360, 4660) does not fit into the charmonium spectrum.

#### **Possible interpretations:**

Undiscovered ψ resonances
 (3<sup>3</sup>D<sub>1</sub>(4560), 5<sup>3</sup>S<sub>1</sub>(4760), 4<sup>3</sup>D<sub>1</sub>(4810))

• Hybrids - most popular model -

- Hadrocharmonium
- Tetraquarks
- (D anti-D<sub>1</sub>) or (D<sup>0</sup> anti-D<sup>\*</sup>) molecules
- $f_0(980)\psi(2S)$  molecule for Y(4660)



Contra: shifted by ~300 MeV , exotic decay channels
Y(4360) and Y(4660) (higher than DD<sup>\*\*</sup> threshold) are not seen in e<sup>+</sup>e<sup>-</sup> → hadrons

> [1] PRL 95 142001 [2] PRL 99 182004

 $Y(4260) \rightarrow J/\psi \pi^0 \pi^0$  (1)

Isospin symmetry  $\Rightarrow$  Y decays to  $(J/\psi\pi^0\pi^0)$  with half the rate of  $(J/\psi\pi^+\pi^-)$ . Large isospin symmetry violation could be a strong evidence of the exotic nature of Y.

Study of cross-section  $e^+e^- \rightarrow (J/\psi \pi^0 \pi^0) \gamma_{ISR}$  as a function of mass is based on 790 fb<sup>-1</sup>.

#### Analysis features:

- Require  $\gamma_{ISR}$  (lower backgrounds)
- $J/\psi \rightarrow \mu^+\mu^- (J/\psi \rightarrow e^+e^-)$  is wiped out by the skim conditions)







 $M^2_{recoil}$  distribution for events above 4 GeV is consistent with production via ISR.



# $Y(4260) \rightarrow J/\psi \pi^0 \pi^0$ (2)



 $\Gamma_{ee} \mathcal{B}(J/\psi \pi^0 \pi^0) = (3.19^{+1.82}_{-1.53}) eV$ 

 $\Gamma_{ee} \mathcal{B}(J/\psi \pi^+ \pi^-) = 2 \cdot (3.0^{+0.6}_{-0.5}) \text{ eV} \text{ [PDG]}$ 

 $\Gamma_{\text{ee}}(\psi(2S)) = (2.30 \pm 0.10) \text{ keV}$  consistent with  $\Gamma_{\rm m}(\psi(2S)) = (2.35 \pm 0.04) \text{ keV} \text{[PDG]}$ 

Y parameters are fixed from PDG. Background:  $(x-x_{\min}) \cdot e^{c(x-x_{\min})}, x_{\min} = m_{J/\psi} - 2m_{\pi^0}$ The shape accounts for effective luminosity and efficiency as a function of mass.



 $B^{\pm} \rightarrow K^{\pm} (K_{s} K \pi)^{0}$  (1) arXiv:1105.0978

A large spread of measured  $\eta_c$  and, especially,  $\eta_c(2S)$  parameters.

|                           | <b>BaBar</b> [1][2] | <b>CLEO</b> [3] | Belle[4]                 |
|---------------------------|---------------------|-----------------|--------------------------|
| $M(\eta_c), MeV$          | 2982.2±0.4±1.6      | 2981.8±1.3±1.5  | $2981.4 \pm 0.5 \pm 0.4$ |
| $\Gamma(\eta_{c}), MeV$   | 31.7±1.2±0.8        | 24.8±3.4±3.5    | 36.6±1.5±2.0             |
| $M(\eta_{c}(2S)), MeV$    | 3630.8±3.4±1.0      | 3642.9±3.1±1.5  | 3633.7±2.3±1.9           |
| $\Gamma(\eta_c(2S)), MeV$ | 17.0±8.3±2.5        | 6.3±12.4±4.0    | 19.1±6.9±6.0             |
|                           |                     |                 |                          |

[1] PRD 81 052010 [3] PRL 92 142001 [2] PRL 92 142002 [4] NPPS 184 220

B<sup>±</sup>→K<sup>±</sup>(K<sub>s</sub>Kπ)<sup>0</sup> with the (c anti-c) formation from (K<sub>s</sub>Kπ)<sup>0</sup> - **signal** B<sup>±</sup>→K<sup>±</sup>(K<sub>s</sub>Kπ)<sup>0</sup> without the (c anti-c) formation – **non-resonant component** 

Same final state  $\Rightarrow$  interference is inevitable! Gives large model uncertainty (>50% for signal yield)  $\Rightarrow$  should be taken into account.



 $B^{\pm} \rightarrow K^{\pm} (K_{S} K \pi)^{0}$ (2)

7.150 VN

100

50

N/0.2

100

50

non-res

signal

 $M(K_sK\pi)$  and  $\cos\theta$  distributions are used to distinguish signal and non-resonant components. 2D fit:



| $\mathbf{R}^{\pm}$ _ | $\neg K^{\pm}$ | $(\mathbf{K})$ | $(K\pi)^0$ | $(\mathbf{Z})$ |
|----------------------|----------------|----------------|------------|----------------|
|                      |                |                |            |                |
|                      |                |                |            |                |

| $B^{\pm} \rightarrow K^{\pm} \eta_{c}, \eta_{c} \rightarrow (K_{S} K \pi)^{0}$ |                                                                              |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| <i>B</i> × <i>B</i> , 10 <sup>−6</sup>                                         | $26.7 \pm 1.4(\text{stat})^{+2.9}_{-2.6}(\text{syst}) \pm 4.9(\text{model})$ |  |  |
| M(η <sub>c</sub> ), MeV                                                        | $2985.4 \pm 1.5(\text{stat})^{+0.2}_{-2.0}(\text{syst})$                     |  |  |
| $\Gamma(\eta_{c}), MeV$                                                        | $35.1\pm3.1(\text{stat})^{\pm1.0}_{-1.6}$ (syst)                             |  |  |
| $B^{\pm} \rightarrow K^{\pm}$                                                  | $= \eta_c(2S), \eta_c(2S) \rightarrow (K_S K \pi)^0$                         |  |  |
| <i>B</i> × <i>B</i> , 10 <sup>−6</sup>                                         | $3.4^{+2.2}_{-1.5}$ (stat+model) $^{+0.5}_{-0.4}$ (syst)                     |  |  |
| $M(\eta_c(2S)), MeV$                                                           | $3636.1_{-4.2}^{+3.9}$ (stat+model) $_{-2.0}^{+0.5}$ (syst)                  |  |  |
| Γ(η <sub>c</sub> (2S)), MeV                                                    | $6.6^{+8.4}_{-5.1}$ (stat+model) $^{+2.6}_{-0.9}$ (syst)                     |  |  |

Some of the parameters of the 2D fitting function are dependent  $\Rightarrow$  model error.

#### The procedure of taking the interference into account:

- no assumptions about the phase or absolute value of the interference
- significant decrease of model error for *B*
- comparable errors (despite the additional model error)

Results are consistent with those obtained in the most accurate measurements.

### Conclusion

- New measurements of X(3872) parameters. UL on the width is significantly reduced.
- A difference in X(3872) masses produced via decays  $B^+ \rightarrow K^+(J/\psi \pi^+ \pi^-)$  and  $B^0 \rightarrow K^0(J/\psi \pi^+ \pi^-)$  is consistent with zero, which does not corroborate diquark-antidiquark model.
- Study of angular correlations and  $M(\pi^+\pi^-)$  spectrum in  $B^+ \rightarrow K^+(J/\psi\pi^+\pi^-) \Rightarrow$  both  $1^{++}$  or  $2^{-+}$  hypotheses for X(3872) are possible (more statistics is needed).
- No evidence of  $X(3872) \rightarrow \psi' \gamma \Rightarrow$  hypothesis of large (c anti-c) admixture in the X(3872) is not confirmed.
- The value of  $\mathcal{B}(Y(4260) \rightarrow J/\psi \pi^0 \pi^0)$  is consistent with the expectation from isospin.
- Parameters of  $\eta_c$  and  $\eta_c(2S)$  have been measured taking into account the interference between signal and non-resonant component.
- B-factories discovered a large number of new charmonium-like states and launched a new era of spectroscopy. Despite the large amount of data that was accumulated, statistics are still insufficient to resolve all the puzzles of exotic states. New Super B-factories are needed!

### Backup slides

### $X(3872) \rightarrow J/\psi \pi^+ \pi^-$



FIG. 2: The  $M_{\rm bc}$  (left),  $M(\pi^+\pi^- J/\psi)$  (center) and  $\Delta E$  (right) distributions for  $B^+ \to K^+ X(3872)$  (top) and  $B^0 \to K_S X(3872)$  (bottom) event candidates within the signal regions of the other two quantities. The curves show the results of the fit described in the text .

TABLE IV: Systematic errors on the mass measurement.

| Source              | Systematic error (MeV) |
|---------------------|------------------------|
| $m_{J/\psi}$        | 0.01                   |
| $m_{\psi'}$         | 0.04                   |
| Bias correction     | 0.16                   |
| 3-dim. fit model    | 0.03                   |
| MC model dependence | 0.09                   |
| Quadrature sum      | 0.19                   |

TABLE V: Systematic errors on the product branching fraction measurement.

| Source           | $K^+X(3872)$<br>(percent) | $K_SX(3872)$<br>(percent) | $\frac{K_S/K^+}{(\text{percent})}$ |
|------------------|---------------------------|---------------------------|------------------------------------|
| N <sub>BB</sub>  | 1.4                       | 1.4                       | -                                  |
| Secondary BF     | 1.0                       | 1.0                       | -                                  |
| MC statistics    | 1.0                       | 1.0                       | 1.4                                |
| MC model         | 2.1                       | 2.1                       | -                                  |
| Hadron ID        | 3.7                       | 2.6                       | 1.1                                |
| Lepton ID        | 1.1                       | 1.1                       | -                                  |
| Tracking         | 1.8                       | 1.4                       | 0.4                                |
| 3-dim. fit model | 3.0                       | 5.0                       | 6.0                                |
| $K_S$ efficiency | 12                        | 4.5                       | 4.5                                |
| Quadrature sum   | 6.0                       | 8.1                       | 7.7                                |

$$\frac{d\Gamma}{d\Omega} = \sum_{j} \left| \sum_{\lambda_{J/\psi}\lambda_{\rho}} A^{J^{PC}}_{\lambda_{J/\psi}\lambda_{\rho}} D^{1}_{\lambda_{J/\psi}} (\phi_{J/\psi}, \theta_{J/\psi}) D^{1}_{-\lambda_{\rho}0}(\phi_{\rho}, \theta_{\rho}) D^{J_{X}}_{0 \ (\lambda_{J/\psi}-\lambda_{\rho})}(\phi_{X}, \theta_{X}) \right|^{2}$$

### $X(3872) \rightarrow J/\psi \pi^+ \pi^-$



FIG. 3: Fitted vaules for  $\Gamma_{X(3872)}$  (vertical) versus the MC generator input values (horizontal). The curve is the result of a fit to a second-order polynomial.



FIG. 4: Likelihood values from the  $\Gamma_{X(3872)}$  scan described in the text. The region of the plot below the arrow contains 90% of the total area under the points.

|        | $N_{sig}$  | $r_{\omega}$                    | $N_{\rho \to \pi\pi}$ | $N_{\omega \to \pi\pi}$ | $N_{\rho-\omega \text{ interf}}$ |
|--------|------------|---------------------------------|-----------------------|-------------------------|----------------------------------|
| S-wave | $159\pm15$ | $0.07\pm0.05$                   | 140.9                 | $0.6\pm0.5$             | 17.8                             |
| P-wave | $158\pm15$ | $0.48\substack{+0.20 \\ -0.14}$ | 93.2                  | $3.6^{+1.5}_{-1.1}$     | 60.0                             |

 $X(3872) \rightarrow J/\psi(\psi')\gamma$ 

Evidence of  $B \rightarrow K\chi_{c2}$ :  $\mathcal{B}(B^+ \rightarrow K^+\chi_{c2}) / \mathcal{B}(B^+ \rightarrow K^+\chi_{c1}) = (2.25^{+0.73}_{-0.69} \pm 0.17) \times 10^{-2}$ more suppressed than expected in theory[2]

[2] NPB 811 155



FIG. 1:  $M_{J/\psi\gamma}$  distributions for (a)  $B^+ \to \chi_{c1,c2}(\to J/\psi\gamma)K^+$  and (b)  $B^0 \to \chi_{c1,c2}(\to J/\psi\gamma)K^0_S$  decays. The curves show the signal (pink dot-dashed for  $\chi_{c1}$  and red dashed for  $\chi_{c2}$ ), and the background component (black dot-ted) as well as the overall fit (blue solid). The insets show a reduced range of  $M_{J/\psi\gamma}$  and the contribution of the  $B \to \chi_{c2}K$  peak.

 $Y(4260) \rightarrow J/\psi \pi^0 \pi^0$ 



| Events / 0.17 GeV | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |
|-------------------|-------------------------------------------------------|--|
|                   | 0 <sup>[-</sup>                                       |  |

| Table 1:  | Summary | of systematic        | c uncertainties. |
|-----------|---------|----------------------|------------------|
| I UUIU I. | Julilla | OI DI DI DICIII alli |                  |

| Source                     | Error on  | yield (%) |
|----------------------------|-----------|-----------|
| Luminosity                 | ±1.4      |           |
| <b>Branching Fractions</b> | $\pm 1.0$ |           |
| MuID                       | ±         | 2.7       |
| Tracking                   | $\pm 2.0$ |           |
| Trigger                    | $\pm 2.8$ |           |
| Cut selection              | +3.2      | -2.8      |
| Y(4260) mass and width     | +5.5      | -5.7      |
| Choice of fit function     | +18.3     | -7.8      |
| Sum in quadrature          | +20       | -11       |

Table 2: Results of fit to  $M(\pi^0\pi^0 J/\psi)$  spectrum. The non-resonant contribution is fit using a falling exponential with threshold function.

| Parameter                                                           | Value  | Positive | Negative | Units |
|---------------------------------------------------------------------|--------|----------|----------|-------|
|                                                                     |        | error    | error    |       |
| $\Gamma_{e^+e^-} \cdot \mathcal{B}(Y(4260) \to \pi^0 \pi^0 J/\psi)$ | 3.19   | +1.82    | -1.53    | eV    |
| $N(\psi(2S))$                                                       | 629    | +26      | -25      |       |
| $\psi(2S)$ mean                                                     | 3.6842 | +0.0005  | -0.0005  | GeV   |
| $N(1\gamma_{bkg})/N(\psi(2S))$                                      | 23     | +4       | -4       | %     |
| $N(>1\gamma_{bkg})/N(\psi(2S))$                                     | 3.6    | +3.5     | -3.4     | %     |
| N(non-resonant)                                                     | 14     | +8       | -7       |       |
| Non-resonant shape parameter                                        | -1.4   | +0.7     | -0.6     |       |

 $Y(4260) \rightarrow J/\psi \pi^0 \pi^0$ 

#### Cuts:

- Events with only two tracks passing track quality cuts
- MuID: One-hard, one-loose selection require one track with MuID > 0.9, no MuID cut on other track.
   However if the second tracks has MuID equal to zero: require the track to be in the detector forward of cos(θ) > -0.85
- $|M(\mu\mu) m_{J/\psi}| < 25 \text{ MeV} (m_{J/\psi} \text{ is PDG mass})$
- $E(\gamma) > 35$  MeV, quite low by Belle standards, with four  $\pi^0$  photons in each event, the smallest energy photon distibution goes to quite low energies
- $|M(\gamma\gamma) m_{\pi^0}| < 15 \text{ MeV} (m_{\pi^0} \text{ is PDG mass})$
- $P_{\perp}(\pi^0\pi^0 J/\psi) w.r.t. \gamma_{ISR} < 0.05$  GeV, we require our candidate have the opposite the direction of the ISR photon.
- $|M^2_{recoil}| < 1.2 \text{ GeV}^2$

Multiple  $\pi^0$  candidates, for a best candidate selection we minimise the sum of the absolute value of the two  $\pi^0$  decay angles:

$$|\cos(\theta_{\gamma})| = |\frac{E(\pi^{0})}{P(\pi^{0})} \cdot \frac{E(\gamma_{1}) - E(\gamma_{2})}{E(\gamma_{1}) + E(\gamma_{2})}|$$

 $B^{\pm} \rightarrow K^{\pm} (K_{S} K \pi)^{0}$ 



4

ΔE, GeV





 $B^{\pm} \rightarrow K^{\pm} (K_{S} K \pi)^{0}$ 





 $B^{\pm} \rightarrow K^{\pm} (K_{S} K \pi)^{0}$ 

|                                 | a                     | · · · · · · · · · · · · · · · · · · · |
|---------------------------------|-----------------------|---------------------------------------|
| Source                          | $B^{\pm} \to K^{\pm}$ | $^{\pm}(K_SK\pi)^0$                   |
|                                 | $\eta_c$              | $\eta_c(2S)$                          |
| Number of $B\bar{B}$ pairs      | 1.3                   | 1.3                                   |
| ${\cal B}(K_S 	o \pi^+ \pi^-)$  | 0.1                   | 0.1                                   |
| Model efficiency dependence     | $^{+8.6}_{-6.7}$      | $^{+2.0}_{-1.5}$                      |
| Background approximation        |                       | +2.3                                  |
| Bin size                        | -3.3                  | $^{+13.3}_{-3.9}$                     |
| $\Delta E  \operatorname{cut}$  | -2.2                  | +2.3                                  |
| Detector resolution             | +1.1                  | $^{+4.7}_{-8.6}$                      |
| $M_{inv}$ efficiency dependence | +2.2                  | +0.8                                  |
| Track reconstruction            | 3                     | 3                                     |
| $K^{\pm}$ identification        | 1.6                   | 1.6                                   |
| $\pi^{\pm}$ identification      | <b>1</b> .5           | 1.5                                   |
| $K_S$ reconstruction            | 4.4                   | 4.4                                   |
| Total, %                        | $^{+10.7}_{-9.8}$     | $^{+15.8}_{-11.9}$                    |

| Source                   | $\eta_c$         |                  | $\eta_c(2S)$     |                  |
|--------------------------|------------------|------------------|------------------|------------------|
|                          | Mass             | Width            | Mass             | Width            |
| Background approximation | <u></u>          |                  | +0.2             | -0.1             |
| Bin size                 | +0.2             | -1.0             | -1.1             | +2.4             |
| Detector resolution      | -0.1             | $^{+1.0}_{-1.2}$ | $^{+0.5}_{-0.1}$ | $^{+1.8}_{-0.9}$ |
| Scale uncertainty        | -2.0             | 1000             | -1.7             | - <del>1</del>   |
| Total, $MeV/c^2$         | $^{+0.2}_{-2.0}$ | $^{+1.0}_{-1.6}$ | $^{+0.5}_{-2.0}$ | $^{+2.6}_{-0.9}$ |







| State                                  | M (MeV)                | $\Gamma({ m MeV})$     | $J^{PC}$        | Process (mode)           | Experiment                |
|----------------------------------------|------------------------|------------------------|-----------------|--------------------------|---------------------------|
| B-decays                               |                        |                        |                 |                          |                           |
| $\eta_{ m c}(2S)$                      | $3637\pm4$             | $14\pm7$               | 0-+             | $K(K^0_SK^-\pi^+)$       | Belle(2002), BaBar, CLEO  |
| X(3872)                                | $3871.52 \pm 0.20$     | $1.3 {\pm} 0.6$        | 1++             | $K(\pi^+\pi^-J/\psi)$    | Belle(2003), BaBar,CDF,D0 |
|                                        |                        |                        |                 | $K(D^{*0}ar{D^0}),$      |                           |
| Y(3940)                                | $3915.7\pm4.2$         | $41 \pm 12$            | $0/2^{?+}$      | $K(\omega J/\psi)$       | Belle(2004), BaBar        |
| $Z_1(4050)^+$                          | $4051^{+24}_{-43}$     | $82^{+51}_{-55}$       | ?               | $K(\pi^+\chi_{c1}(1P))$  | Belle (2008)              |
| $Z_2(4250)^+$                          | $4248^{+185}_{-45}$    | $177^{+321}_{-72}$     | ?               | $K(\pi^+\chi_{c1}(1P))$  | Belle (2008)              |
| $Z(4430)^+$                            | $4443^{+24}_{-18}$     | $107^{+113}_{-71}$     | ?               | $K(\pi^+\psi(2S))$       | Belle (2007)              |
| Double charmonium                      |                        |                        |                 |                          |                           |
| X(3940)                                | $3942^{+9}_{-8}$       | $37^{+27}_{-17}$       | $_{3,+}$        | $J/\psi(Dar{D^*})$       | Belle (2007)              |
| X(4160)                                | $4156^{+29}_{-25}$     | $139^{+113}_{-65}$     | ? <sup>?+</sup> | $J/\psi(D^*\bar{D^*})$   | Belle (2007)              |
| ISR                                    |                        |                        |                 |                          |                           |
| Y(4008)                                | $4008^{+121}_{-49}$    | $226 \pm 97$           | 1               | $(\pi^+\pi^-J/\psi)$     | Belle (2007)              |
| Y(4260)                                | $4263\pm5$             | $108 \pm 14$           | 1               | $(\pi^+\pi^- J/\psi)$    | BaBar (2005), Belle, CLEO |
| Y(4360)                                | $4353 \pm 11$          | $96 \pm 42$            | 1               | $(\pi^+\pi^-\psi(2S))$   | BaBar (2007), Belle       |
| X(4630)                                | $4634^{+9}_{-11}$      | $92^{+41}_{-32}$       | 1               | $(\Lambda_c \Lambda_c)$  | Belle (2007)              |
| Y(4660)                                | $4664 \pm 12$          | $48 \pm 15$            | 1               | $(\pi^+\pi^-\psi(2S))$   | Belle (2007)              |
| Two photons                            |                        |                        |                 |                          |                           |
| $\chi_{\mathrm{c2}}(2P)$               | $3927.2\pm2.6$         | $24.1{\pm}6.1$         | 2++             | $(D\bar{D})$             | Belle(2005), BaBar        |
| X(3915)                                | $3914\pm4$             | $23^{+10}_{-13}$       | $0, 2^{++}$     | $(\omega J/\psi)$        | Belle(2009)               |
| X(4350)                                | $4350.6^{+4.6}_{-5.1}$ | $13.3^{+18.4}_{-10.0}$ | $^{0,2^{++}}$   | $(\phi J/\psi)$          | Belle(2009)               |
| Energy scan and $\Upsilon$ transitions |                        |                        |                 |                          |                           |
| $\eta_b(1S)$                           | $9390.7\pm2.9$         | ?                      | 0-+             | $\gamma + ()$            | BaBar(2008), CLEO         |
| $Y_b$                                  | $10889.6\pm2.3$        | $54.7^{+8.0}_{-7.6}$   | 1               | $\pi^+\pi^-\Upsilon(nS)$ | Belle (2008)              |



