The study of γ/ϕ_3 -sensitive hadronic decays at LHCb

Angelo Carbone INFN-Bologna

on behalf of LHCb Collaboration

EPS-HEP 2011, Grenoble 21-27 July

Introduction

Results from two families of decays related to γ determination

Today results

- B→h⁺h^{-'}
 - Analysis with 320 pb⁻¹ (2011 data) [LHCb-CONF-2011-042]
 - charge (direct) CP asymmetries in $B^{\circ} \rightarrow K\pi$ and $B^{\circ}_{s} \rightarrow \pi K$
 - first observation of $B^{o}_{s} \rightarrow \pi\pi$ and measurement of branching ratio
 - Measurement of the $B^{\circ} \rightarrow KK$ branching ratio
- $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$
 - Analysis with 36.5 pb⁻¹ (2010 data) [LHCb-CONF-2011-031]
 - Ratio of branching fraction BR($B^{\pm} \rightarrow DK^{\pm}$)/BR($B^{\pm} \rightarrow D\pi^{\pm}$) with D $\rightarrow K\pi$, KK, $K\pi\pi\pi\pi$, $K_s^{\circ}\pi\pi$
 - $R_{CP+} = 1 + r_B^2 + 2 r_B \cos(\delta_B) \cos(\gamma)$
 - $A_{CP+} = 2r_B \sin(\delta_B) \sin(\gamma)/R_{CP+}$

LHCb detector

Results from $B \rightarrow h^+h^-$ decays

Angelo Carbone

Direct CP asymmetries

• Direct CP asymmetries:

 $A_{CP}(B^{0} \to K\pi) = \frac{\Gamma(\bar{B}^{0} \to K^{-}\pi^{+}) - \Gamma(B^{0} \to K^{+}\pi^{-})}{\Gamma(\bar{B}^{0} \to K^{-}\pi^{+}) + \Gamma(B^{0} \to K^{+}\pi^{-})} \qquad A_{CP}(B^{0}_{s} \to \pi K) = \frac{\Gamma(\bar{B}^{0}_{s} \to \pi^{-}K^{+}) - \Gamma(B^{0}_{s} \to \pi^{+}K^{-})}{\Gamma(\bar{B}^{0}_{s} \to \pi^{-}K^{+}) + \Gamma(B^{0}_{s} \to \pi^{+}K^{-})}$

- The asymmetries measured in data must be corrected for:
 - detector-induced $K^+\pi^-/\pi^-K^+$ charge asymmetries
 - B production asymmetry
- The physical CP asymmetries are then related to the "Raw" asymmetries:

$$A_{CP}(B^0 \to K\pi) = A_{CP}^{RAW}(B^0 \to K\pi) - A_{\Delta}(B^0 \to K\pi)$$
$$A_{CP}(B^0_s \to \pi K) = A_{CP}^{RAW}(B^0_s \to \pi K) - A_{\Delta}(B^0_s \to \pi K)$$

Raw asymmetries

Raw CP asymmetry in $B^{\circ} \rightarrow K\pi$: -0.095 ± 0.011 2011 data Events / (0.02 GeV/s²) 2000 56 0 5 2000 50 0 5 2000 50 0 2000 L=320 pb⁻¹ GeV/c²) 0005 ⁽²) LHCb LHCb **Preliminary** 0.0<mark>2</mark> 0.02 Preliminary Selection s = 7 TeV Data $\sqrt{s} = 7$ TeV Data 2000 Events/ 1500 optimized for $A_{CP}(B^{\circ} \rightarrow K\pi)$ 1000 1000 500 500 Raw CP -°5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 $K^{+}\pi^{-}$ invariant mass (GeV/c²) 5.4 5.5 5.6 5.7 5.4 Κ π⁺ invariant mass (GeV/c²) 5.1 5.2 5.3 5.8 asymmetry Raw CP asymmetry in $B^{\circ} \rightarrow \pi K: 0.28 \pm 0.08$ clearly visible from Events / (0.02 GeV/c² LHCb LHCb Preliminary 120 Preliminary the plots $\sqrt{s} = 7$ TeV Data $\sqrt{s} = 7$ TeV Data 100**∳**⊓ 80 60 60 Selection 40 40 optimized for 20 20 $A_{CP}(B^{\circ}, \rightarrow \pi K)$ 5.4 5.5 5.6 5.7 5 Κ⁺ π⁻ Invariant mass (GeV/c²) 5.1 5.2 5.3 5.1 5.2 5.6 5.3 5.4 5.5 5.7 $K^{-}\pi^{+}$ invariant mass (GeV/c²)

Angelo Carbone

Istituto Nazionale di Fisica Nucleare

HEP-EPS Grenoble, July 21-27 2011

7

2011 data L=320 pb⁻¹

- Instrumental K⁺π⁻/π⁻K⁺ charge asymmetry extracted from control channels: D*→D°(Kπ)π_s, D*→D°(KK)π_s and untagged D°→Kπ
- B production asymmetry measured from the decay $B^{\circ} \rightarrow J/\psi(\mu\mu)K^{*\circ}(K\pi)$

Results from $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ decays

Angelo Carbone

Angelo Carbone

Ratio of branching fraction BR(B[±] \rightarrow DK[±])/BR(B[±] \rightarrow D π^{\pm}) $\mathcal{R}^{k/\pi}_{CP+} = (9.31 \pm 1.89 \pm 0.53)\%$

Angelo Carbone

γ from B[±] \rightarrow D(KK)K[±]/ π [±] decays with GLW method

Observables:

Direct-CP-violating decay rates

 $A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} \qquad A_{CP\pm} = \frac{\pm 2 \cdot r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma} \qquad 2010 \text{ data}$ Ratio of charge averaged rates using D decays to CP eingeinstates:

 $R_{CP\pm} = 2 \frac{\Gamma(B^- \rightarrow D_{CP\pm}K^-) + \Gamma(B^+ \rightarrow D_{CP\pm}K^+)}{\Gamma(B^- \rightarrow D^0K^-) + \Gamma(B^+ \rightarrow \overline{D}^0K^+)} \qquad R_{CP\pm} = 1 + r_B^2 \pm 2 \cdot r_B \cos\delta_B \cos\gamma$

 $R_{CP+} = 1.48 \pm 0.31(stat.) \pm 0.12(syst.)$ $A_{CP+} = 0.07 \pm 0.18(stat.) \pm 0.07(syst.)$

New HFAG averages including LHCb results

 $r_B \equiv \left| A(B^- \to \overline{D}{}^0 K^-) / A(B^- \to D^0 K^-) \right|$

 $\delta_{\rm B}$ difference of strong phases

Angelo Carbone

Conclusions

2011 data L=320 pb⁻¹

$N(B^{\circ}\rightarrow\pi\pi)=2347\pm71$

By U-spin symmetry and neglecting penguin annihilation and exchange topologies we expect

$$A_{CP}(B_s^0 \to \pi^+ K^-) \approx \mathcal{A}_{\pi^+\pi^-}^{dir}$$

$$LHCb$$

$$A_{CP}(B_s^0 \to \pi^+ K^-) =$$

$$0.27 \pm 0.08(\text{stat}) \pm 0.02(\text{syst})$$

$$M_{CP}(B_s^0 \to \pi^+ K^-) = \frac{1}{2}$$

$$M_{CP}(B_s^0 \to$$

HFAG correlated average

-0.5

-0.6

-0.7

-0.4

-0.3

-0.2

-0.1

Perfect agreement with Babar Bare agreement with Belle

0.27

Normalization of BR($B^{\circ} \rightarrow KK$) and BR($B_{s}^{\circ} \rightarrow \pi\pi$)

$$\begin{split} \frac{f_d \cdot \mathcal{BR}(B^0 \to K^+K^-)}{f_s \cdot \mathcal{BR}(B_s^0 \to K^+K^-)} &= \frac{N(B^0 \to K^+K^-)}{N(B_s^0 \to K^+K^-)} \cdot \frac{\varepsilon_{rec}(B_s^0 \to K^+K^-)}{\varepsilon_{rec}(B^0 \to K^+K^-)} \\ \frac{f_s \cdot \mathcal{BR}(B_s^0 \to \pi^+\pi^-)}{f_d \cdot \mathcal{BR}(B^0 \to \pi^+\pi^-)} &= \frac{N(B_s^0 \to \pi^+\pi^-)}{N(B^0 \to \pi^+\pi^-)} \cdot \frac{\varepsilon_{rec}(B^0 \to \pi^+\pi^-)}{\varepsilon_{rec}(B_s^0 \to \pi^+\pi^-)} \\ \\ \frac{\mathsf{LHCb} \text{ average}}{f_s/f_d} &= 0.267^{+0.021}_{-0.020} \\ \end{split}$$

 $\mathcal{BR}(B^0 \to K^+ K^-) = (0.14 \pm 0.06(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-6}$ $\mathcal{BR}(B^0_s \to \pi^+ \pi^-) = (0.98 \pm 0.21(\text{stat}) \pm 0.11(\text{syst})) \times 10^{-6}$

$B \rightarrow hh: trigger and event selection$

- Hadronic trigger
 - Look for large E_T cluster in the hadronic calorimeter (Level-0) and high p_T track with large impact parameter with respect to the primary vertex (High Level Trigger)
- Then offline we make use of three sets of kinematic selection cuts, optimized to get the best sensitivity for the measurements of A_{CP}(B^o→Kπ), A_{CP}(B^o_s→πK) and for observing rare decays B^o→KK and B^o_s→ππ

For the measuremen	It of $A_{CP}(B^0 \rightarrow K^+\pi^-)$
Cut turno	Accord regions

Cut type	Accepted regions		
Track p_T [GeV/c]	> 1.1		
Track $IP[\mu m]$	> 150		
Track χ^2 /d.o.f.	< 3		
$\max(p_T^{h^+}, p_T^{h'^-}) [{\rm GeV/c}]$	> 2.8		
$\max(IP^h, IP^{h'^-})[\mu m]$	> 300		
$p_T^B \mathrm{[GeV/c]}$	> 2.2		
$t_{\pi\pi} [\mathrm{ps}]$	> 0.9		

For the measurement of $A_{CP}(B_s \rightarrow \pi^+ K^-)$

Cut type	Accepted regions		
Track $p_T [\text{GeV/c}]$	> 1.2		
Track IP [µm]	> 200		
Track χ^2 /d.o.f.	< 3		
$\max(p_T^{h^+}, p_T^{h'^-}) [{ m GeV/c}]$	> 3.0		
$\max(IP^h, IP^{h'^-})[\mu m]$	> 400		
$p_T^B [{ m GeV/c}]$	> 2.4		
$t_{\pi\pi} [\mathrm{ps}]$	> 1.5		

For the measurement of $BR(B_s \rightarrow \pi^+\pi^-)$ and $BR(B^0 \rightarrow K^+K^-)$

Cut type	Accepted regions
Track $p_T [\text{GeV/c}]$	> 1.2
Track $IP[\mu m]$	> 200
Track χ^2 /d.o.f.	< 3
$\max(p_T^{h^+}, p_T^{h'^-}) [{\rm GeV/c}]$	> 3.0
$\operatorname{amax}(IP^{h}, IP^{h'^{-}})[\mu m]$	> 400
$p_T^B [{ m GeV/c}]$	> 2.8
$t_{\pi\pi} [\mathrm{ps}]$	> 2.0

Angelo Carbone

$B \rightarrow Dh$: event selection

Quantity	$D^0 \rightarrow K^+ \pi^-$	$D^0 \rightarrow K^+K^-$	$D^0 \rightarrow K^+\pi^-\pi^+\pi^-$		
$D^0 nr$	> 1 GeV/c		> 2 GeV/c	Particle	Selection criterion
Daughter K^{\pm} $ \vec{n} $	> 2 GeV/c		> 3 GeV/c	V ⁰ doughton	$\frac{1P}{\chi^2} \ge 9$
Number $(\#)$ of D daughters	> 220 1	$I_{\rm AV}(a_{\rm A}(2))$	> 240 MeV/c (2)	$\Lambda_{\rm S}^{*}$ daughter	$\pi \qquad 2 \operatorname{Gev}/c < p < 100 \operatorname{Gev}/c$ $\operatorname{track} v^2/d \circ f < 5$
with p_{-}	$> 330 \mathrm{MeV}/c$ (2)		> 240 MeV/c (3) > 400 MeV/c (2)		$ \text{mass} - \text{PDG} < 15 \text{ MeV}/c^2$
Number $(\#)$ of D dependence	> 01 (0)	> 400 MeV/c (2)	K_s^0	vertex χ^2 /d.o.f. < 16
Number $(\#)$ of D daughters	> 21 (2)	> 10 (3)		flight distance $\chi^2 > 4$
with IP significance χ^2	> 40 (1)	> 30 (2)		IP $\chi^2 > 25$
			> 40 (1)	$-$ D daughter π	$2 \text{ GeV}/c < \vec{p} < 100 \text{ GeV}/c$
B^{\pm} impact parameter (IP) χ^2	< 9				$\Delta LL(\pi - K) > -10$ track v^2/d of < 5
B^{\pm} flight distance χ^2		> 76		D	$ \text{mass} - \text{PDG} < 25 \text{ MeV}/c^2$
B^{\pm} DOCA		$< 0.1 \mathrm{mm}$			vertex χ^2 /d.o.f. < 4
B^{\pm} cos(direction angle)		> 0.99995			$DLL_K > 0$ (for K) or $DLL_K < 0$ (for π)
B^{\pm} lifetime		$> 0.2 \mathrm{ps}$		+	track χ^2 /d.o.f. < 5
B^{\pm} vertex $\chi^2/d.o.f.$	< 12		Bachelor K^{\pm} or π^{\pm}	or π^{\pm} 2 GeV/c < $ \vec{p} < 100 \text{ GeV/c}$ IP $\chi^2 > 16$	
B^{\pm} mass window	$5025 - 5779 \mathrm{MeV}/c^2$			$n_T \ge 1 \text{ GeV}/c$	
D^0 flight distance χ^2	> 252			$5025 \text{ MeV}/c^2 < \text{mass} < 5550 \text{ MeV}/c^2$	
$D^0 \max(DOCA)$	< 0.3 mm		B^{\pm}	flight distance $\chi^2 > 169$	
$D^0 \cos(\operatorname{direction} \operatorname{angle})$	> 0.002			vertex χ^2 /d.o.f.< 6.25	
D^0 vertex $a^2/d \circ f$	> 0.992			$\operatorname{IP} \chi^2 < 9$	
D° vertex χ /d.o.i.		< 0			$\cos(\text{decay angle}) > 0.999999$
$m(D^{\circ}) - m(D^{\circ})_{PDG}$		$\pm 25 \text{ MeV}/c^{-10}$		-	Number of tracks in event < 240
Bachelor p_T		0.5 - 10 GeV/c			
Bachelor $ \vec{p} $		5 - 100 GeV/c			
Bachelor IP significance χ^2		> 28			
Daughter K DLL _K		> 0			
Daughter $\pi \vec{p} $		> 2 GeV/c			
All track χ^2 /d.o.f.		< 5			
Selection efficiency for $DK(D\pi)$	9.2%(9.3%)	8.8%(9.0%)	2.7%(2.7%)	-	