Measurement of the Top Quark Pair Production Cross-Section in the Single Lepton Channel with the ATLAS Experiment.

Clemens Lange (Deutsches Elektronen-Synchrotron, DESY, Germany) for the ATLAS collaboration

Introduction

Top quark pair production is the new standard candle for high-p_T physics at the LHC. The first basic ingredient is a precise measurement of the production cross-section. Initial ATLAS and CMS measurements had significant uncertainties, but already with the dataset recorded in 2010 of 35 pb⁻¹ at \sqrt{s} = 7 TeV, uncertainties are competitive with Tevatron measurements and theoretical predictions.

ATLAS detector

This measurement is based on the excellent ATLAS capabilities for tracking, tagging and energy deposition measurements. The ATLAS detector was >95% fully functional in 2010.

Top quark physics

Measuring the production cross-section is a very good test of perturbative QCD in the Standard Model. Top quark events are the dominant background to some Higgs scenarios and searches for New Physics.

Top pair decay channels

Top quarks do not hadronise but decay almost exclusively via a b-quark and a W-boson. The socalled semi-leptonic channel, in which one Wboson decays hadronically and the other one leptonically, shows best overall performance between statistical and systematic uncertainties. Semi-leptonic decays happen in 45% of all cases. In this analysis only muon and electron final states are considered.

Event selection

The event selection closely follows the event topology. High quality and well isolated leptons are selected to reject most purely hadronic backgrounds.

good isolated calo object matched to track • E_T > 20 GeV • $|\eta| < 2.47$ (excluding transition region barrel-endcap) • fired the trigger

<u>electrons:</u>

<u>muons:</u> • segments in tracker and muon detector isolated track • p_T > 20 GeV • |ŋ| < 2.5 • fired the trigger

missing transverse E: vector sum of calo energy

Backgrounds

Even though tight selection cuts are applied, not all backgrounds can be rejected. The following backgrounds need to be well understood:

Measurement approach

By using events with 3, 4 and \geq 5 jets ~80% of all top events after cuts are considered. The major background to top is W+jets production. Therefore, topological differences between top pair and W+jets processes are used to create a projective likelihood discriminant:

the two most b-like jets

Multivariate

Profile likelihood fit

The fit to data is performed in all analysis channels simultaneously. The systematic uncertainties are considered as additional

The top pair production cross-section obtained from the fit is:

 $\sigma_{t\bar{t}} = 186 \pm 10(\text{stat.})^{+21}_{-20}(\text{syst.}) \pm 6(\text{lumi.}) \text{ pb}$

which is in agreement with the Standard Model. The dominant systematic uncertainties are > b-tagging calibration (7.5%),

>W + heavy flavour contributions (7%),

<u>0</u>

> initial and final state radiation modelling (4%).

 $171 \pm 17 \begin{array}{c} + 20 \\ - 17 \end{array} \pm 6$

Combined 176 ± 13 pb

(35 pb⁻¹, Prelim.)

NLO QCD (pp)

ŧī

²⁰¹¹ Europhysics Conference on High-Energy Physics, Grenoble