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F-theory

A promising tool

I F-theory: An intuitive tool for embedding GUT models into
string theory

I Goes beyond perturbative D-brane situations

I Algebraic geometry → spectacular control over F-term
aspects of scenarios

BHV/DW Revival

∼ 220 hits on “find t F-theory” on spires:

I Pre-KKLT: ∼ 90 for 2003 > t ≥ 1996

I Post-KKLT, Pre-BHV/DW: ∼ 20 for 2008 > t ≥ 2003

I Post-BHV/DW: ∼ 110 for t ≥ 2008

Leitmotiv of talk: Euphoric phases vs. Contemplative phases
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D6-branes in IIA

Supergravity solution:

ds2 = (1 + M1/r)−1/2

(
−dt2 +

6∑
i=1

dx2
i

)
+ (1 + M1/r)1/2 (dr2 + r2 dΩ2

2

)
eφ = eφ0 (1 + M1/r)−3/4 Cµ = (0, ~A) .

String coupling varies in space. It decreases as r → 0.

Main feature: The D6-brane “backreacts” on (gµν , φ,Cµ).



Strong coupling → 11d

Kaluza-Klein uplift to 11 dimensions:

g
(11)
mn =

(
g

(11)
θθ g

(11)
θµ

g
(11)
θµ g

(11)
µν

)
=

(
eφ Cµ
Cµ gµν

)
,

string coupling measured by radius of S1.

D6 lifts to

ds2
11 = −dt2 +

6∑
i=1

dx2
i + (1 + M1/r) (dr2 + r2 d Ω2

2)

+ (1 + M1/r)−1 (dθ + Aφ · d φ)2 .

Completely geometric



Taub-NUT

The D6-brane lifts to a pure geometry: The Taub-NUT space.

1

D6−brane

R3

S



Non-Abelian singularities

M2 brane

D6 brane D6 brane D6 brane

R3

M2 brane

Taub-NUT centers approach → ADE singularity
→ new light states ∼ enhanced gauge group



The axio-dilaton

Define the complex scalar τ ≡ C(0) + i eφ.

Conjectured exact symmetry of IIB:

τ → a τ + b

c τ + d
,

for a, b, c , d ∈ Z and a d − c d = 1.

SL(2 ,Z), S-duality group. Same as modular group of the torus.



Torus-fibration

3

D7
(z)

z compact space

B

F-theory encodes compactification + axio-dilaton data into one
4 + 8-dimensional geometric object: R4 × CY4 = R4 × B3×̃T 2



Non-Abelian singularities

D7

z compact space

D7

Singular fibers approach → ADE singularity of the CY4



M/F-theory duality

Unlike M-theory, extra two dimensions are not physical. However,
by T-duality, one can make sense of it through M-theory.

F-theory CY4 × R4

M-theory CY4 × R3

IIB B3 × R3 × S1
1/ε

IIA B3 × R3 × S1
ε

S1
M

T 2

T-duality
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Modern developments

[Beasley, Heckman, Vafa], [Donagi, Wijnholt] ’08

I E8 structure: Can package GUT reps., generate perturbatively
forbidden Yukawa’s.

I New way of breaking GUT group via fluxes without making
U(1)Y massive.

I Decoupling: Can send Mpl →∞ while keeping gYM constant.
Need: GUT 7-brane wraps shrinkable 4-cycle

Expectation of finiteness

I Internal 3-fold should be positively curved (Fano)  only
about 100 exist.

I Decoupling ⇐⇒ GUT brane on Del Pezzo  only 8 exist.

=⇒ Can make genericity predictions.
Can do “local model building”
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Local model building

GUT 7 brane

_

5
_

10

Yukawa

5

‘Zoom in’ on GUT 7-brane

. . . ‘zoom in’ on a patch within GUT 7-brane



Finiteness debunked

[Córdova ’09]

I Shrinkability to a point → Fano 3-fold.
Otherwise, only shrinkable to a curve.

I Once we give up Fano → Del Pezzo’s no longer priviledged:
Infinite series of possible surfaces.

I Matter curves are tightly interrelated:

3 Σ10 − Σ5 + 5 c1(S) = 0

I Yuwaka points are tightly interrelated:

p(SU(7)) + 15 p(E6)− 22 p(SO(12)) = 30 c1(S) · c1(S)

So finiteness is a myth. On the other hand, things get constrained
already at the local level.
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Fluxes

Axio-dilaton τ = C0 + ie−φ is geometrized, the rest is not.

M-theory: G4 = dC3

IIB: F5,F3,H3; D7 F2

IIA: F4,H3; D6 F2

T 2

T-duality

G4 controls important data:

I D3-tadpole ∼
∫
X4

G ∧ G

I Chiral spectrum in 4d

I F-term  constraints on moduli: E.g. W ∼
∫

G4 ∧ Ω0,4



Spectral cover

Clever trick: Treat CY4 locally as an ALE fibration over GUT-brane

patch of CY 4 brane
in B3

ALE

Procedure:

1. Define 5-fold cover π : S̃ → S .

2. Define appropriate line bundle L over S̃

3. Push L onto S : π∗(L) ∼ V. V is vector bundle that encodes
G4-flux indirectly.

Drawbacks:

I Only locally defined. See works by [Dolan, Marsano, Saulina,

Schäfer-Nameki] and [Grimm, Kerstan, Palti, Weigand] for global
completions.

I Works only for gauge groups G that are commutants in E8 of
structure group of V . Only good for SU(5) models.



Spectral cover

Clever trick: Treat CY4 locally as an ALE fibration over GUT-brane

patch of CY 4 brane
in B3

ALE

Procedure:

1. Define 5-fold cover π : S̃ → S .

2. Define appropriate line bundle L over S̃

3. Push L onto S : π∗(L) ∼ V. V is vector bundle that encodes
G4-flux indirectly.

Drawbacks:

I Only locally defined. See works by [Dolan, Marsano, Saulina,
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Poincaré invariance

G4 = ω
(2)
B3
∧ dθM ∧ dθT

H3 = ω
(2)
B3
∧ dθT S1-fibration over R3

IIA

T

 Poincaré invariance

G4 = ω
(4)
B3

F4 = ω
(4)
B3

F5 = ω
(4)
B3
× dθT

IIA

T

where spacetime = R3 × S1
T  

Poincaré invariance

G4 must have exactly 1 leg along fiber  cannot be α(1,1) ∧ ω(1,1)

HARD!
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 Poincaré invariance

G4 = ω
(4)
B3

F4 = ω
(4)
B3

F5 = ω
(4)
B3
× dθT

IIA

T

where spacetime = R3 × S1
T  
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G4-fluxes

[A. Braun, A. C., R. Valandro]

Rewrite Weierstrass equation for elliptic fibration:

y2 = x3 + f x + g −→ Y+ Y− + a6 = X Q

Impose constraint a6 = ρ τ

−→ New algebraic 4-cycles:

Σ4 : Y± = 0 ∩ ρ = 0 ∩ X = 0 .

New elements of H2,2 ∩ H2(Z). Not intersections of 2 divisors in
CY4

G4 flux ∼ Poincaré dual to Σ4
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Comparison with IIB

Claim: In weak coupling limit, our new G4 ←→ F2 on D7-branes.

Checks for generic, D7/O7 configuration:

I Induced D3-charges match:

1
2

∫
D7

F 2
2 = −1

2

∫
CY4

G 2
4

I Cplex str. mod. of CY4 match 7-brane moduli

CY4 : Y+ Y− + ρ τ = X Q ←→ D7 : η2 + ξ2 ρ τ = 0

Checks for, generic D7O(1) with D7Sp(1) and SU(2) stacks:

I Induced D3-charges match for perturbative case

I Can compute chiral index at Σ = D7O(1) ∩ D7Sp(1)

intersection: ∫
Σ

FD7O(1)
− FD7Sp(1)

=

∫
Σ×P1

G4
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Conclusion

I Via its application to GUT model building, F-theory has
gotten a facelift.

I Some aspects about genericity may have been oversold.

I However, the ideas are bright → subject even more fascinating
than expected.

I For the past year or so, more focus on fundamental aspects.
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