F-theory and Model Building

Andrés Collinucci ASC, LMU, Munich

Grenoble, July 23, 2011

F-theory

A promising tool

- ► F-theory: An intuitive tool for embedding GUT models into string theory
- Goes beyond perturbative D-brane situations
- ▶ Algebraic geometry → spectacular control over F-term aspects of scenarios

BHV/DW Revival

 \sim 220 hits on "find t F-theory" on spires:

- ▶ Pre-KKLT: \sim 90 for 2003 $> t \ge 1996$
- ▶ Post-KKLT, Pre-BHV/DW: \sim 20 for 2008 > t \geq 2003
- ▶ Post-BHV/DW: ~ 110 for $t \ge 2008$

Leitmotiv of talk: Euphoric phases vs. Contemplative phases

F-theory

A promising tool

- ► F-theory: An intuitive tool for embedding GUT models into string theory
- Goes beyond perturbative D-brane situations
- ▶ Algebraic geometry → spectacular control over F-term aspects of scenarios

BHV/DW Revival

- \sim 220 hits on "find t F-theory" on spires:
 - ▶ Pre-KKLT: \sim 90 for 2003 $> t \ge 1996$
 - ▶ Post-KKLT, Pre-BHV/DW: \sim 20 for 2008 > $t \ge$ 2003
 - ▶ Post-BHV/DW: ~ 110 for $t \ge 2008$

Leitmotiv of talk: Euphoric phases vs. Contemplative phases

F-theory

A promising tool

- ► F-theory: An intuitive tool for embedding GUT models into string theory
- Goes beyond perturbative D-brane situations
- ▶ Algebraic geometry → spectacular control over F-term aspects of scenarios

BHV/DW Revival

- \sim 220 hits on "find t F-theory" on spires:
 - ▶ Pre-KKLT: \sim 90 for 2003 $> t \ge 1996$
 - ▶ Post-KKLT, Pre-BHV/DW: \sim 20 for 2008 > $t \ge$ 2003
 - ▶ Post-BHV/DW: ~ 110 for $t \ge 2008$

Leitmotiv of talk: Euphoric phases vs. Contemplative phases

Outline

1. Introduction: F-theory from M-theory

2. Modern developments

3. Pressing issue: Fluxes

Outline

1. Introduction: F-theory from M-theory

2. Modern developments

3. Pressing issue: Fluxes

D6-branes in IIA

Supergravity solution:

$$egin{array}{lcl} ds^2 &=& (1+M_1/r)^{-1/2} \left(-dt^2+\sum_{i=1}^6 dx_i^2
ight) \ &+& (1+M_1/r)^{1/2} \left(dr^2+r^2\,d\Omega_2^2
ight) \ e^\phi &=& e^{\phi_0} \left(1+M_1/r
ight)^{-3/4} \quad C_\mu = (0,ec A) \,. \end{array}$$

String coupling varies in space. It decreases as $r \to 0$.

Main feature: The D6-brane "backreacts" on $(g_{\mu\nu}, \phi, C_{\mu})$.

Strong coupling $\rightarrow 11d$

Kaluza-Klein uplift to 11 dimensions:

$$g_{mn}^{(11)} \ = \ \left(egin{array}{ccc} g_{ heta heta}^{(11)} & g_{ heta \mu}^{(11)} \ g_{ heta \mu}^{(11)} & g_{\mu
u}^{(11)} \end{array}
ight) = \left(egin{array}{ccc} e^{\phi} & C_{\mu} \ C_{\mu} & g_{\mu
u} \end{array}
ight) \, ,$$

string coupling measured by radius of S^1 .

D6 lifts to

$$ds_{11}^2 = -dt^2 + \sum_{i=1}^6 dx_i^2 + (1 + M_1/r) (dr^2 + r^2 d\Omega_2^2)$$

+ $(1 + M_1/r)^{-1} (d\theta + A_\phi \cdot d\phi)^2$.

Completely geometric

Taub-NUT

The D6-brane lifts to a pure geometry: The Taub-NUT space.

Non-Abelian singularities

Taub-NUT centers approach \rightarrow ADE singularity \rightarrow new light states \sim enhanced gauge group

The axio-dilaton

Define the complex scalar $\tau \equiv C_{(0)} + i e^{\phi}$.

Conjectured exact symmetry of IIB:

$$au
ightarrow rac{a\, au + b}{c\, au + d}\,,$$

for $a, b, c, d \in \mathbb{Z}$ and ad - cd = 1.

 $SL(2,\mathbb{Z})$, S-duality group. Same as modular group of the torus.

Torus-fibration

F-theory encodes compactification + axio-dilaton data into one 4+8-dimensional geometric object: $\mathbb{R}^4 \times CY_4 = \mathbb{R}^4 \times B_3 \tilde{\times} T^2$

Non-Abelian singularities

Singular fibers approach \rightarrow ADE singularity of the CY₄

M/F-theory duality

Unlike M-theory, extra two dimensions are not physical. However, by T-duality, one can make sense of it through M-theory.

Outline

1. Introduction: F-theory from M-theory

2. Modern developments

3. Pressing issue: Fluxes

Modern developments

[Beasley, Heckman, Vafa], [Donagi, Wijnholt] '08

- ► E8 structure: Can package GUT reps., generate perturbatively forbidden Yukawa's.
- New way of breaking GUT group via fluxes without making $U(1)_Y$ massive.
- ▶ Decoupling: Can send $M_{pl} \rightarrow \infty$ while keeping g_{YM} constant. Need: GUT 7-brane wraps shrinkable 4-cycle

Expectation of finiteness

- ▶ Internal 3-fold should be positively curved (Fano) → only about 100 exist.
- ▶ Decoupling ⇔ GUT brane on Del Pezzo → only 8 exist.
- ⇒ Can make genericity predictions. Can do "local model building"

Modern developments

[Beasley, Heckman, Vafa], [Donagi, Wijnholt] '08

- ► E8 structure: Can package GUT reps., generate perturbatively forbidden Yukawa's.
- New way of breaking GUT group via fluxes without making $U(1)_Y$ massive.
- ▶ Decoupling: Can send $M_{pl} \rightarrow \infty$ while keeping g_{YM} constant. Need: GUT 7-brane wraps shrinkable 4-cycle

Expectation of finiteness

- ▶ Internal 3-fold should be positively curved (Fano) → only about 100 exist.
- ▶ Decoupling ⇔ GUT brane on Del Pezzo → only 8 exist.
- ⇒ Can make genericity predictions.

 Can do "local model building"

Local model building

'Zoom in' on GUT 7-brane

... 'zoom in' on a patch within GUT 7-brane

Finiteness debunked

[Córdova '09]

- Shrinkability to a point → Fano 3-fold. Otherwise, only shrinkable to a curve.
- Once we give up Fano → Del Pezzo's no longer priviledged: Infinite series of possible surfaces.
- ▶ Matter curves are tightly interrelated:

$$3\Sigma_{10} - \Sigma_5 + 5c_1(S) = 0$$

Yuwaka points are tightly interrelated:

$$p(SU(7)) + 15 p(E_6) - 22 p(SO(12)) = 30 c_1(S) \cdot c_1(S)$$

So finiteness is a myth. On the other hand, things get constrained already at the local level.

Finiteness debunked

[Córdova '09]

- Shrinkability to a point → Fano 3-fold. Otherwise, only shrinkable to a curve.
- Once we give up Fano → Del Pezzo's no longer priviledged: Infinite series of possible surfaces.
- Matter curves are tightly interrelated:

$$3\Sigma_{10} - \Sigma_5 + 5c_1(S) = 0$$

Yuwaka points are tightly interrelated:

$$p(SU(7)) + 15 p(E_6) - 22 p(SO(12)) = 30 c_1(S) \cdot c_1(S)$$

So finiteness is a myth. On the other hand, things get constrained already at the local level.

Outline

1. Introduction: F-theory from M-theory

Modern developments

3. Pressing issue: Fluxes

Fluxes

Axio-dilaton $\tau = C_0 + ie^{-\phi}$ is geometrized, the rest is not.

*G*₄ controls important data:

- ▶ D3-tadpole $\sim \int_{X_4} G \wedge G$
- Chiral spectrum in 4d
- ▶ F-term \rightsquigarrow constraints on moduli: E.g. $W \sim \int G_4 \wedge \Omega^{0,4}$

Spectral cover

Clever trick: Treat CY₄ locally as an ALE fibration over GUT-brane

Procedure:

- 1. Define 5-fold cover $\pi: \tilde{S} \to S$.
- 2. Define appropriate line bundle \mathcal{L} over \tilde{S}
- 3. Push $\mathcal L$ onto $S\colon \pi_*(\mathcal L)\sim \mathcal V.$ V is vector bundle that encodes G_4 -flux indirectly.

Drawbacks:

- Only locally defined. See works by [Dolan, Marsano, Saulina, Schäfer-Nameki] and [Grimm, Kerstan, Palti, Weigand] for global completions.
- ▶ Works only for gauge groups G that are commutants in E_8 of structure group of V. Only good for SU(5) models.

Spectral cover

Clever trick: Treat CY₄ locally as an ALE fibration over GUT-brane

Procedure:

- 1. Define 5-fold cover $\pi: \tilde{S} \to S$.
- 2. Define appropriate line bundle ${\mathcal L}$ over \tilde{S}
- 3. Push $\mathcal L$ onto $S\colon \pi_*(\mathcal L)\sim \mathcal V.$ V is vector bundle that encodes G_4 -flux indirectly.

Drawbacks:

- Only locally defined. See works by [Dolan, Marsano, Saulina, Schäfer-Nameki] and [Grimm, Kerstan, Palti, Weigand] for global completions.
- ▶ Works only for gauge groups G that are commutants in E_8 of structure group of V. Only good for SU(5) models.

Poincaré invariance

$$G_4 = \omega_{B_3}^{(2)} \wedge d\theta_M \wedge d\theta_T$$

$$\downarrow_{\text{IIA}}$$
 $H_3 = \omega_{B_3}^{(2)} \wedge d\theta_T \xrightarrow{\mathsf{T}} S^1$ -fibration over \mathbb{R}^3

→ Poincaré invariance

where spacetime $= \mathbb{R}^3 imes S^1_{\mathcal{T}} \leadsto$

Poincaré invariance

 G_4 must have exactly 1 leg along fiber \rightsquigarrow cannot be $\alpha^{(1,1)} \wedge \omega^{(1,1)}$

Poincaré invariance

$$G_4 = \omega_{B_3}^{(2)} \wedge d\theta_M \wedge d\theta_T$$

$$\downarrow^{\text{IIA}}$$
 $H_3 = \omega_{B_3}^{(2)} \wedge d\theta_T \xrightarrow{\mathsf{T}} S^1$ -fibration over \mathbb{R}^3

→ Poincaré invariance

$$G_4 = \omega_{B_3}^{(4)}$$
 \downarrow IIA
 $F_4 = \omega_{B_3}^{(4)} \xrightarrow{\mathsf{T}} F_5 = \omega_{B_3}^{(4)} \times d\theta_T$

where spacetime $= \mathbb{R}^3 \times S^1_T \leadsto$

Poincaré invariance

 G_4 must have exactly 1 leg along fiber \leadsto cannot be $\alpha^{(1,1)} \wedge \omega^{(1,1)}$

Poincaré invariance

$$G_4 = \omega_{B_3}^{(2)} \wedge d\theta_M \wedge d\theta_T$$

$$\downarrow_{\text{IIA}}$$
 $H_3 = \omega_{B_3}^{(2)} \wedge d\theta_T \xrightarrow{\mathsf{T}} S^1$ -fibration over \mathbb{R}^3

~ Poincaré invariance

$$G_4 = \omega_{B_3}^{(4)}$$
 \downarrow IIA
 $F_4 = \omega_{B_3}^{(4)} \xrightarrow{\mathsf{T}} F_5 = \omega_{B_3}^{(4)} \times d\theta_T$

where spacetime $= \mathbb{R}^3 \times S^1_{\mathcal{T}} \leadsto$

Poincaré invariance

 G_4 must have exactly 1 leg along fiber \leadsto cannot be $\alpha^{(1,1)} \wedge \omega^{(1,1)}$

G₄-fluxes

[A. Braun, A. C., R. Valandro]

Rewrite Weierstrass equation for elliptic fibration:

$$y^2 = x^3 + f x + g \longrightarrow Y_+ Y_- + a_6 = X Q$$

Impose constraint $a_6 = \rho \tau$

→ New algebraic 4-cycles:

$$\Sigma_4: Y_{\pm} = 0 \quad \cap \quad \rho = 0 \quad \cap \quad X = 0.$$

New elements of $H^{2,2} \cap H^2(\mathbb{Z})$. **Not** intersections of 2 divisors in CY_{Δ}

 G_4 flux \sim Poincaré dual to Σ_4

G₄-fluxes

[A. Braun, A. C., R. Valandro]

Rewrite Weierstrass equation for elliptic fibration:

$$y^2 = x^3 + f x + g \longrightarrow Y_+ Y_- + a_6 = X Q$$

Impose constraint $a_6 = \rho \tau$

→ New algebraic 4-cycles:

$$\Sigma_4: Y_\pm = 0 \quad \cap \quad
ho = 0 \quad \cap \quad X = 0.$$

New elements of $H^{2,2} \cap H^2(\mathbb{Z})$. **Not** intersections of 2 divisors in CY_4

 G_4 flux \sim Poincaré dual to Σ_4

Comparison with IIB

Claim: In weak coupling limit, our new $G_4 \longleftrightarrow F_2$ on D7-branes.

Checks for generic, D7/O7 configuration:

▶ Induced D3-charges match:

$$\frac{1}{2} \int_{D7} F_2^2 = -\frac{1}{2} \int_{CY_4} G_4^2$$

▶ Cplex str. mod. of CY₄ match 7-brane moduli

$$CY_4: Y_+ Y_- + \rho \tau = X Q \longleftrightarrow D7: \eta^2 + \xi^2 \rho \tau = 0$$

Checks for, generic $D7_{O(1)}$ with $D7_{Sp(1)}$ and SU(2) stacks:

- ▶ Induced D3-charges match for perturbative case
- ► Can compute chiral index at $\Sigma = D7_{O(1)} \cap D7_{Sp(1)}$ intersection:

$$\int_{\Sigma} F_{D7_{\mathcal{O}(1)}} - F_{D7_{\mathcal{S}p(1)}} = \int_{\Sigma \times \mathbb{P}^1} G_4$$

Comparison with IIB

Claim: In weak coupling limit, our new $G_4 \longleftrightarrow F_2$ on D7-branes.

Checks for generic, D7/O7 configuration:

▶ Induced D3-charges match:

$$\frac{1}{2} \int_{D7} F_2^2 = -\frac{1}{2} \int_{CY_4} G_4^2$$

Cplex str. mod. of CY₄ match 7-brane moduli

$$CY_4: Y_+ Y_- + \rho \tau = X Q \longleftrightarrow D7: \eta^2 + \xi^2 \rho \tau = 0$$

Checks for, generic $D7_{O(1)}$ with $D7_{Sp(1)}$ and SU(2) stacks:

- ▶ Induced D3-charges match for perturbative case
- Can compute chiral index at Σ = D7_{O(1)} ∩ D7_{Sp(1)} intersection:

$$\int_{\Sigma} F_{D7_{\mathcal{O}(1)}} - F_{D7_{\mathcal{S}_{\mathcal{P}}(1)}} = \int_{\Sigma \times \mathbb{P}^1} G_4$$

Conclusion

- Via its application to GUT model building, F-theory has gotten a facelift.
- ▶ Some aspects about genericity may have been oversold.
- ► However, the ideas are bright → subject even more fascinating than expected.
- ▶ For the past year or so, more focus on fundamental aspects.