Experience with CMS Offline and Computing in LHC Runs 2010-2011.

Jean-Roch Vlimant for the CMS Collaboration.
UC Santa Barbara, Fermilab, CERN.

EPS-HEP 2011, Grenoble.
CMS Computing World Wide

Outline

➢ CMS Data Distribution Model
➢ Software Development
➢ Quality Monitoring
➢ Data Availability in 2010-2011
➢ CMS Physics Performance

52 Tier-2
Data Distribution Infrastructure

- **RAW Data**
 - Archived at CERN
 - Duplicated to Custodial Tier-1

- **Reconstruction**
 - Express at Tier-0
 - Prompt at Tier-0
 - Reprocessing at Tier-1
 - Detailed event description (RECO) archived at Tier-1

- **Analysis**
 - Skims produced at Tier-1
 - Analysis event content (AOD) distributed to Tier-2
 - Analysis jobs ran at Tier-2
Simulation Distribution Infrastructure

- **Event Generation**
 - Performed at Tier-2 and Tier-1
 - Archived back in Tier-1

- **Reconstruction**
 - Performed at Tier-2
 - Reprocessing at Tier-1
 - RECO archived at Tier-1

- **Analysis**
 - Analysis samples distributed to Tier-2
 - Analysis jobs ran at Tier-2
Traffic of CMS Data

Data transfer system handles large amount of data efficiently.

T2 \leftrightarrow T2 transfer reduces the latency on availability of analysis samples.
Software Development

- **Standard integration mechanism**
 - Daily build, Performance monitoring, Sanity check.
- **Frequent production of test samples**
 - Software closure tests, Physics performance monitoring, Base for development.
- **Active core team of software performance**
 - Constant improvement with growing complexity.

![Unique Contributors over Time](Image)
CMS Event Display

- Very detailed event display, consolidation of several projects.
- Available under multiple forms
 - Light-weight: portable.
 - Full-framework: running reconstruction software “live”.
 - Simulation geometry: full detail.
- Permits fast understanding of event details, software features, physics content.
Data Quality Monitoring

- Several Levels of monitoring
 - Detector/Online
 - Express reconstruction
 - Prompt reconstruction
- Web gui for visualization
- Easy access to information
 - Shifter/Expert layouts
 - Comparison
 - Summary plots
- Data certification
 - Lumi-section mask
 - From express early in early LHC runs, on prompt with increased luminosity
- Software Validation
 - Use the same infrastructure
CMS Software Updates

Simulation

• Full and Fast applications
• Improving generator interfaces
• Geometry, Material budget

Reconstruction

• Algorithmic
• Calibration
• Event size on tape

Updates targeted and scheduled for production of consistent Simulation and Data samples for Physics conferences.

Reprocessing of data is a matter of weeks.

Updating simulation samples is the most expensive part; reprocessing is measured in months.

Fast simulation is under-used for central production.
Prompt reconstruction

- **2010**
 - 911M events, 3 major releases deployed ($\sim10^{-8}$ event failure)
 - $\sim500\text{kB/event}$ distributed centrally (detailed)
- **2011**
 - $\sim1\text{B events}$, 2 major releases deployed
 - $\sim100\text{kB/event}$ distributed centrally (analysis oriented)

- Full occupancy of the Tier-0 farm for days in the last LHC fills.
- On-going work for optimized utilization.
Data Availability in 2010-2011

Reprocessing in 2010 (~50pb\(^{-1}\))
- Detailed event distributed centrally (~500kB/event)
- 4 major releases +2 calibrations
 - 2 passes for ICHEP
 - 1 pass for all 2010 data
 - 1 pass towards Moriond

Reprocessing in 2011
- Analysis event distributed
- 1 release
 - 1 pass for all 2010 data
 - 1 pass at Tier-0 switch

- Constantly provided a consistent dataset of CMS data to analysis.
- Promptly provide certification of available dataset.
Simulation in 2010-2011

- Monte Carlo samples generated from scratch in two main campaigns.
- Pile-up added on top of detector simulation: less CPU expensive.
- Reprocessings with release compatible with prompt reconstruction.
 - Always providing dataset consistent with data to be analyzed.
 - Full availability made possible with contingency in schedules.

~2B events compatible with prompt reconstruction

Monte Carlo samples generated from scratch in two main campaigns.
Pile-up added on top of detector simulation: less CPU expensive.
Reprocessings with release compatible with prompt reconstruction.
- Always providing dataset consistent with data to be analyzed.
- Full availability made possible with contingency in schedules.
Analysis in 2010-2011

- Physics Analysis Specific Releases produced
- Analysis user friendly environment created
- Wide usage of the GRID
- Analysis at Tier-2
 - Shared with MC production.
 - ~40 / 52 ready for computing.
 - Increasing share due to partial shift of simulation production to Tier-1.
Summary

- The Computing Project efficiently and successfully handled the data from the CMS detector, and billions of simulated events.
- The Offline Project well managed the software necessary for processing of the CMS data.
- Infrastructure and mode of operation were adapted to change of regime of data taking and distribution.
- Transition to stable data taking operation with high pile-up at the LHC.