

International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alpes France July 21-27 2011

Letter of Intent

The LHCb upgrade

Burkhard Schmidt for the LHCb Collaboration

Outline:

- Present LHCb detector and trigger
- LHCb upgrade main drivers
- Overview of the sub-detector modifications
- Conclusions

LHCb Present LHCb Detector

> Forward spectrometer designed to exploit huge σ_{bb} at the LHC

- Detector shows excellent performance
 - see talk of M. v. Beuzekom this morning

> LHCb physics goals:

- Search for New Physics via CP asymmetries and rare decays
- Collect ~5 fb⁻¹ at L~3x10³²cm⁻²s⁻¹ over 5 years before 2nd LHC long shutdown in 2018

Hich Search for New Physics at LHCb

Two classes of measurements:

Exploration:

Focus on decay modes or observables a priori very sensitive to New Physics, but which have not been accessible to previous experiments.

Precision studies:

Measurement of known parameters with improved sensitivity, to allow for more precise comparisons with theory.

As new exploration topics appear, existing studies migrate to precision studies.

Present LHCb detector

collect ~5 fb⁻¹ with L~ $3x10^{32}$ cm⁻²s⁻¹ Exploration example :

> search for $B_s \rightarrow \mu \mu$ down to SM value Precision studies:

 Measure CKM angle γ to 3-4° to permit meaningful CKM tests

Upgraded LHCb Detector

collect > 50 fb⁻¹ with L~1x10³³cm⁻²s⁻¹ Precision studies:

- Measure BR($B_s \rightarrow \mu \mu$) to precision of ~10% (assuming SM value)

Exploration example:

> Search for $B^0 \rightarrow \mu \mu$

Upgraded LHCb Detector

• LHCb goals with the upgrade:

> Quark flavour physics main component, but expand physics program to include:

- Lepton flavour physics
- Electroweak physics
- Exotic searches

LHC

General purpose detector in the forward region with 40 MHz readout and a full software trigger.

LHCb Trigger – limitations

- Final states with muons
- → Linear gain
- Hadronic final states
- \rightarrow Yield flattens out
 - Must raise p_T cut to stay within 1 MHz readout limit

To profit of a luminosity of 10^{33} cm⁻²s⁻¹, information has to be introduced that is more discriminating than E_T.

Upgrade strategy: 40MHz readout rate Fully software trigger 20kHz output rate

LHCb Upgraded LHCb environment: *L* & Pile-up

LHCb design operation :

 £ ~ 2x10³² cm⁻²s⁻¹ with 25ns bunch spacing

 Average pile-up ~ 0.4

LHCb Upgrade :

Present LHCb operation:

> $\mathcal{L} \sim 3x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ with 50ns bunch spacing (LHC has up to 1380 bunches per beam)

ightarrow Average pile -up of 1.2 - 2.5 has been successfully used

VELO Upgrade

Challenges: Data rates $< rate_{max} > = 200 MHz cm^{-2}$ Irradiations_{max}= 5.10¹⁵ 1 MeV n_{eq}cm⁻² Low material budget

Two options:

- Pixel detector: VELOPIX based on TimePix
 - 55 µm x 55 µm pixel size
 - \rightarrow Advantageous for pattern recognition
 - Strip detector: based on proven design
 - reduced strip pitch 30 µm
 - \rightarrow Better IP-resolution performance

R&D ongoing

- Module layout and mechanics
- Sensor options:
 - Planar Si, 3D, Diamond
- CO₂ cooling
- FE electronics
- RF-foil of vacuum box

Hick Main Tracker upgrade: IT, TT

Current IT and TT Si-strip detectors must be replaced:

> 1 MHz Readout electronics integrated

Two technologies:

- Silicon strips:
 - Current technology
 - > Development of a rad-hard FE chip @ 40MHz
- > 250 µm Scintillating Fiber Tracker
 - > Fibers coupled to a Silicon Photo-Multiplier
 - SiPM radiation tolerance under study
 - ➢ R/O ASIC for SiPM

under investigation

Hep Main Tracker upgrade: OT

Current tracker works already with upgrade pile-up level spill-over for 25ns bunch-spacing not yet tested

OT straw detector remains for the outer part

- > Detector aging in hot area is under investigation
- > Consider module replacements with 1mm Scintillating Fiber Tracker in hottest region
- > Replace straw tracker TDC chip by 40 MHz version

PID upgrade: RICH detectors

• Retain RICH-1 and RICH-2 detectors

Replace Photo-detectors

- > At present: Pixel HPDs with 1 MHz R/O chip integrated
- > Readout for the upgrade: MaPMTs & R/O with 40 MHz custom ASIC

MaPMTs (Hamamatsu):

R7600 vs R11265 :

- 8x8 pixels, 2.0x2.0 mm², 2.3 mm pitch (2.9 mm)
- 18.1x18.1 mm² active area (23.5x23.5 mm²)
- CE (simulation) : 80% (90%)
- Fractional coverage: 50% (80%)

Prototyping using 40 MHz Maroc-3 R/O chip

- Gain compensation
- Binary output

PID upgrade: TORCH

Add Time of Flight detector based on a 1 cm quartz plate, for the identification of p<10 GeV hadrons (replacing Aerogel) combined with DIRC technology:

- TORCH = Time Of internally Reflected CHerencov light
- reconstruct photon flight time and direction in specially designed standoff box
- Measure ToF of tracks with ~15 ps (~70 ps per photon)

 \rightarrow could be installed later than 2018

Hicp Calorimeter and Muon System

- ECAL and HCAL are maintained
 - Keep all modules & PMTs
 - Reduce the PMTs gain by a factor 5
- PS and SPD will be removed
 - e / γ / hadron separation in HLT with the whole detector info
- New FEE to compensate for lower gain and to allow 40 MHz readout

New digital electronics prototype

- Muon detectors are already read out at 40 MHz in the present L0 trigger
 - Front-end electronics can be kept
 - Remove detector M1
 - muon ID LLT and HLT
 - room for TORCH
 - > MWPC aging :
 - \succ Expect up to 0.7 C/cm on wires for 50 fb⁻¹ in hottest region
 - tested up to 0.44 C/cm with no loss of performance
 - > 1C/cm is considered as an upper limit for safe operation of MWPCs

Common developments

TELL40: Common Back-End readout module:

- Modular mezzanine-based approach
- Format under investigation:
 - Advanced-TCA motherboard
- Tests of high-speed links on proto-board:
 - 12-way Optical I/Os, GBT compatible
- Transmission to the DAQ using 10 Gb Ethernet

ACTEL Flash FPGA for front-end modules

- Advantages over ASICs:
 - re-programmable, faster development time.
- Can they survive the radiation?
- Irradiation program started (on A3PE1500)
 - Preliminary results : up to 30 krad ok

The schedule

2010-2012 LHC data taking at 7TeV Ramping up to a few x 10³³

Long shutdown 1 2013- 2014

> 2015-2017 LHC data taking up to 14 TeV Ramping up to design luminosity

Long shutdown 2 2017-2018

> 2019-2021 LHC data taking at design energy and luminosity

Long shutdown 3 Towards HL-LHC 2011 – 2013 :

Carry out Detector R&D for the upgrade

Prepare TDRs

Secure funding

2014 – 2017:

Construction of detector components
 VELO, IT/TT, RICH

2017 – 2018:

Installation and commissioning of the upgraded detector

2019 onwards:

 Data-taking with the fully upgraded LHCb detector

Conclusions

- LHCb has a firm plan to upgrade by 2018:
 - > Readout entire detector at 40 MHz with a fully software-based trigger
 - > Enormous samples of exclusive b- and c- decays, particularly in the B_s sector
 - Independent of the LHC luminosity upgrade.
- Upgrade LOI submitted to the LHCC in March 2011
 - LHCC considers "the physics case compelling" and the 40 MHz readout as the right upgrade strategy.
 - > LHCC encouraged LHCb to prepare a TDR as soon as possible.
- Given its forward geometry, its excellent tracking and PID capabilities and the foreseen flexible software-based trigger, the upgraded LHCb detector
 - is an ideal detector for the next generation of flavour physics experiments
 - > provides unique and complementary possibilities for New Physics studies beyond flavour.