Supernovae la and Dark Energy

The Supernova Legacy Survey 3-year results

on behalf of SNLS Delphine Hardin, LPNHE, Université Pierre et Marie Curie, Paris, France

HEP 2011, Genoble, France, July 22 2011

supernovae Ia and Dark Energy

- 1. Measuring the Energy Content of the Universe
- 2. Cosmology with type Ia supernovae
- 3. SNLS 3-years analysis & results
- 4. What's next?

Universe in expansion : $d \propto expansion factor a(t)$

expansion history ⇔ energy content

when observing a luminous source, we measure :

- the redshift $z : 1+z = \Delta \lambda / \lambda = a^{-1}(t)$
- the flux $F : \rightarrow$ luminosity distance $\mathbf{d}_{\mathbf{L}}(\mathbf{L} : \text{luminosity})$

$$\mathbf{d}_{\mathbf{L}} = (\mathbf{L} / 4\pi \mathbf{F})^{1/2}$$

•*Hubble Diagram* : $d_L(z)$

$$d_L(z) = \frac{cz}{H_0} \times \mathcal{D}(z; \Omega_M, \Omega_X, w_0, \ldots)$$

matter :

$$\rho_M(t_0) \text{ or }: \Omega_M = \rho_M(t_0) / \rho_{\text{crit}}(t_0)$$

Supernova Cosmology Project Perlmutter et al. (1998)

expansion is accelerating : X necessary !!

Flat universe: $\Omega_{\rm M} + \Omega_{\Lambda} = 1$

What is X (dark energy)?

X: perfect fluid with equation of state $w = p/\rho$ & $\Omega_{\rm X}$

- Cosmological Constant Λ : formally equivalent to fluid with $\rho_{\Lambda} = \Lambda/(8\pi G) \& w_{\Lambda} = -1$
- Vacuum Energy : $\rho_V(t) = \text{cste} \rightarrow w_V = -1$

• X :
$$w = \text{cste}$$
, or $w = w(z) = w_0 + (1 - a) w'$

To measure w precisely :

- low-z and high-z d_L
- high precision on d_L
- $\Omega_{\rm M}$ prior or constraint increases precision

Standard Candles to Probe the Expansion History

$$d_L \equiv \left(\frac{L}{4\pi F}\right)^{1/2} = \frac{cz}{H_0} \times \mathcal{D}(z; \Omega_M, \Omega_X, w)$$

Problem : we measure the flux **F**, how do we know the luminosity **L** ????

<u>STANDARD CANDLES</u> : $L \approx cste$

 \rightarrow compare the fluxes of 2 standard candles at z_1 and z_2

$$\frac{d_L(z_1)}{d_L(z_2)} = \left(\frac{F_2}{F_1}\right)^{1/2} = \mathcal{F}(z_i; \Omega_M, \Omega_X, w)$$

supernovae Ia and Dark Energy

- 1. Measuring the Energy Content of the Universe
- 2. Cosmology with type Ia supernovae
- 3. SNLS 3-years analysis & results
- 4. What's next?

Type Ia Supernovae as Standard Candles

thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
show little (40%) peak luminosity dispersion
they are standard candles

BUT :

- they show a light curve shape - luminosity relation : **brighter - slower**

- they also exhibit a color-luminosity relation : brighter-bluer

Standardisation : after empirical correction :

- \rightarrow 16% dispersion on L_{peak}
- \rightarrow 8% precision on distance d_L

Type Ia Supernovae as Standard Candles

thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
show little (40%) peak luminosity dispersion
they are standard candles

BUT :

- they show a light curve shape - luminosity relation : **brighter - slower**

- they also exhibit a color-luminosity relation : brighter-bluer

Standardisation : after empirical correction :

- \rightarrow 16% dispersion on L_{peak}
- \rightarrow 8% precision on distance d_L

Type Ia Supernovae as Standard Candles

thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
show little (40%) peak luminosity dispersion
they are standard candles

BUT :

- they show a light curve shape - luminosity relation : brighter - slower

- they also exhibit a color-luminosity relation : brighter-bluer

Standardisation : after empirical correction :

- \rightarrow 16% dispersion on L_{peak}
- \rightarrow 8% precision on distances **d**_L

Supernovae Ia modelisation

Using radiative transfer codes, this relationship is reproduced simply by increasing the abundance of ⁵⁶Ni in the explosion.

Here this is characterized by increasing the effective temperature of the atmosphere.

Nugent et al., 1995

An empirical approach :

- comparing fluxes at different redshifts
- standardisation and distance estimator

comparing fluxes at different redshift

$$d_L \equiv \left(\frac{L}{4\pi F}\right)^{1/2} = \frac{cz}{H_0} \times \mathcal{D}(z;\Omega_M,\Omega_X,w)$$

F_B is the **restframe B band flux (m**_B **magnitude)** measured at ≠ redshifts → in ≠ obs. frame filters

 \rightarrow flux inter-calibration of passbands

Calibration is crucial (dominant systematics in survey)

- to get $m_B \underline{at peak}$, shape & color : \rightarrow empirical spectro-photometric modeling $\phi(\lambda, t)$ to interpolate between photometric measurements
- \rightarrow trained on a set of nearby & distant SNe

standardisation & distance estimator

- m_B, *shape*, *color* measured on each SN
- M_B , α , β fitted on Hubble diagram along with cosmology
- α : brighter-slower relation
- β : brighter-bluer relation -- no assumption whether intrisic or due to extinction by dust

Hubble diagram and cosmological constraints

Dark Energy ?

Recent SN surveys and compilations

Recent photometric samples :

- Carnegie Sample (~ **20+30**, Freedman, 2009 (I-band HD), Folatelli 2010)
- SDSS-II (~100, Kessler 2009)
- ESSENCE (~ **60**, Wood-Vasey 2007)
- HST (~ **30**, Riess 2007, ~ **20** Suzuki 2011)
- SNLS, SNLS-3 (~ 240, Guy 2010), SNLS-1 (~ 70, Astier 2006)

Recent compilations :

- Union sample (Kowalski 2008, Amanullah 2010, Suzuki 2011)
- Constitution sample (+CfA3) (Hicken, 2009)

SNLS-3 Hubble diagram (Conley 2011)

supernovae Ia and Dark Energy

- 1. Measuring the Energy Content of the Universe
- 2. Cosmology with type Ia supernovae
- 3. <u>SNLS 3-years analysis & results</u>
- 4. What's next?

Component of the Deep Canadian-France-Hawaii Telescope Legacy Survey

- detection & follow-up with 1 instrument :
 3.6-m telescope @ Hawaii (Mauna Kea, 4200m),
 Megacam (CEA/IRFU), 1 sq. degree
- → thorough understanding & **calibration** of instrument
- \rightarrow deep survey (Malmquist bias)
- 4 filters griz : \rightarrow m_B at \neq z, B-V or U-B *colors* for all SNe

rolling search : repeated observations of 4 fields detection & follow-up at the same time

- \rightarrow get early, pre-discovery SN photometry
- \rightarrow well sampled & well measured lightcurve : m_B , lightcurve shape

40 nights /year during 5 years (end : 08/2009)

 \rightarrow ~ 450 SNe Ia

→ deep SN-free images : photometric study of SNe host galaxies

Rolling Search Mode

Spectroscopic Follow-up :

SNLS

10-m class telescopes @ Hawaii, Chile

- \rightarrow spectroscopic identification for all SNe Ia in SNLS-3 sample
- \rightarrow redshift *z* measurement (host galaxy)
- \rightarrow complementary program on spectral studies : pec. SN, UV ...

Balland et al. 2009

Credit

Most plots shown here are borrowed from the following papers:

Regnault, et al., A&A, 2009 Guy et al., A&A 2010 Conley et al., ApJS 2011 Sullivan et al., ApJ 2011, accepted

+ few others : Balland, et al. 2009, Perret et al. 2010, Sullivan et al 2010, ..

SNLS-3 years results :

- ⇒ Statistics : SNLS-1 : $71 \rightarrow 242$ z ~ 0.2 1. spectro. SNe Ia
- **c** extended with nearby + SDSS-II @ z<0.2 + HST : 472 SNe Ia
- **2** independant analysis (France/Canada)
- ⇒ <1% precision
- **⇒** improved spectro-photometric supernova modeling SALT2& SIFTO → trained on nearby & SNLS data
- ⇒ host galaxy nature influence
 →« standard » SNe Ia brighter in massive galaxies
- **Systematics included** in cosmology fit

SDSS-II Supernovae Survey

SDSS-II Supernovae Survey

Holtzman et al., 2008

• intermediate-z SN search : 0.05 < z < 0.4• rolling search : 2.5-m telescope repeated scans of a $2.5 \times = 120 \text{ deg}^2$ equatotrial stripe

• ugriz light-curve

• \approx 500 SNeIa (spectro. confirmed)

fills the « intermediate-redshift desert »

SNLS-3 years results :

- ⇒ Statistics : SNLS-1 : $71 \rightarrow 242$ z ~ 0.2 1. SNe Ia
- **c** extended with nearby + SDSS-II @ z<0.2
- **2** independant analysis (France/Canada)
- ⇒ <1% precision
- ⇒ trained on nearby & SNLS data rained on nearby rained on nearb

Shost galaxy nature influence → « standard » SNe Ia brighter in massive galaxies

Systematics included in cosmology fit

Calibration: < 1% precision

- a strict control of focal plane uniformities computed using dithered observation of dense stellar fields
- use BD+17 4708 for flux calibration instead of Vega (same color range as our observations)
- external low-z SNe sample : calibrated against Landolt UBVRI system
 - --> anchor the Megacam griz system to Landolt reference stars
 - --> main systematic source

SNLS

SNLS-3 years results :

- ⇒ Statistics : SNLS-1 : $71 \rightarrow 242$ z ~ 0.2 1. SNe Ia
- **c** extended with nearby + SDSS-II @ z<0.2
- **2** independant analysis (France/Canada)
- ⇒ <1% precision
- Improved spectro-photometric supernova modeling SALT2& SIFTO
 - \rightarrow trained on nearby & SNLS data
 - \rightarrow perform equally well, differences provide systematics estimate
- **>** host galaxy nature influence
 - \rightarrow « standard » SNe Ia brighter in massive galaxies
- **Systematics included** in cosmology fit

SN spectro-photometric model : SALT2

$$\phi(\lambda_e, t) = X_0 \left[M_0(\lambda_e, t) + X_1 M_1(\lambda_e, t) \right] \exp(\mathcal{C}CL(\lambda_e))$$

→ empirical model of the SN flux : X_0 (*flux normalisation*), X_1 (*shape*) and *C* (*color*)

- → (M_0, M_1, CL) computed on training sample : nearby (external sample) & distant (SNLS) SNe lightcurves & spectra
- \rightarrow do not use SN distances

SNLS

→ nearby U-band of little use, using distant ($z \sim 0.4$) g (optical) data

Guy et al., 2007 & 2010

SN spectro-photometric model : SALT2

SN Colors :

 \rightarrow no assumption on CL(λ) dependency nor causes : intrinsic SN variation, or reddening by dust

At least 4 (possible) sources of dust :

- (1) MW dust (Cardelli et al, 1989; Schlegel et al, 1998)
- (2) Intergalactic dust
- (3) Host galaxy dust
- (4) Dust shell around the supernova
- \rightarrow no a-priori knowledge of the properties of (2), (3) & (4)
- \rightarrow may be different, may evolve with the environment (and z)
- \rightarrow no a-priori knowledge of the SN intrinsic colors (variability)

 \rightarrow **no prior on** *C* (*color*) distribution

SN spectro-photometric model : SALT2

• The "effective" reddening law for SNe does not follow the Cardelli et al. MW law.

(link with « reddening » law : $R_{\lambda} = \beta(=R_B) - CL(\lambda)$)

SN data decide - on their *C*(*color*) values & - on both β & CL values !!

The two methods that are used perform equally well. The differences provide an estimate of the systematic uncertainties

SIFTO (Conley, 2008):

SNLS

- SNIa spectral sequence from Hsiao, 2007
- pure stretching with time : $\phi(\lambda,t,s) = \phi_0(\lambda,t/s)$ with $s(\lambda)$
- color relations
- trained using nearby and SNLS data & SN distances not used

SNLS-3 years results :

- ⇒ Statistics : SNLS-1 : $71 \rightarrow 242$ z ~ 0.2 1. SNe Ia
- **c** extended with nearby + SDSS-II @ z<0.2
- **2** independant analysis (France/Canada)
- ⇒ <1% precision
- **⇒** improved spectro-photometric supernova modeling SALT2& SIFTO
 → trained on nearby & SNLS data

> host galaxy nature influence

- \rightarrow « standard » SNe Ia brighter in massive galaxies
- **Systematics included** in cosmology fit

SNIa host galaxies

- Are M_B , α and β "universal" parameters? Any host galaxy (environmental) dependence?
- ugrizJHK host data allows estimations of:
 - host colors & luminosity

SNLS

- fit using SED from galaxy synthesis model (PEGASE.2)
- host star formation rate & stellar mass content

SNIa host galaxies

• when splitting SNe by their host galaxy color, SFR, luminosity, stellar mass ...) : differences in shape, -- not in color (e.g. Sullivan et al., 2006)

SNLS

shape parameter > in blue/high SFR/less massive/fainter host galaxies : SN brighter in these galaxies

Hubble residuals versus host mass

SNLS

- the mean SNe Ia is brighter in low-mass galaxies (their mean *shape* is >) : taken into account by the brighter-slower relation but
- the "standard"(*) SNe Ia is brighter (4 σ) in massive galaxies

(*=after lightcurve shape and colour correction, i.e. *shape=*0, *color=*0)

• subtle effect – 0.08mag – smaller than stretch and color corrections

SNIa host galaxies

Improved cosmological analysis

SNLS

Add a further linear host term, H, to the analysis ?

$$\mu_B = m_B - M_B + \alpha(s-1) - \beta c + \gamma H$$

 \rightarrow requires very precise measure of H, and robust errors

→ use two M_B – one for high-mass galaxies and one for low-mass host galaxies : $M_{split} = 10^{10} M_{\odot}$

$$\mu_{\rm B} = m_B - M_{\rm B}^{-1} + \alpha \ shape - \beta \ color \qquad \text{when } M_{\rm host} < M_{\rm split}$$
$$\mu_{\rm B} = m_B - M_{\rm B}^{-2} + \alpha \ shape - \beta \ color \qquad \text{when } M_{\rm host} > M_{\rm split}$$

SNIa host galaxies

Improved cosmological analysis

SNIa host galaxies

Improved cosmological analysis

SNLS-3 years results :

- ⇒ Statistics : SNLS-1 : $71 \rightarrow 242$ z ~ 0.2 1. SNe Ia
- **c** extended with nearby + SDSS-II @ z<0.2
- **2** independant analysis (France/Canada)
- ⇒ <1% precision
- **⇒** improved spectro-photometric supernova modeling SALT2& SIFTO
 → trained on nearby & SNLS data

Shost galaxy nature influence →« standard » SNe Ia brighter in massive galaxies

Systematics included in cosmology fit

Including the systematics

For the ith SN : distance modulus : $\mu_i = m_{Bi} - (M - \alpha s_i + \beta c_i)$ compared with : $\mu(z_i; \text{cosmo})$ residual : $r_i = \mu_i - \mu(z_i; \text{cosmo})$

SNLS

$$\chi^2 = {}^t r \mathbf{C}^{-1} r$$
, with $\mathbf{C} = \mathbf{D}_{\text{stat}} + \mathbf{C}_{\text{stat}} + \mathbf{C}_{\text{sys}}$

 D_{stat} / C_{stat} is the statistical uncertainty covariance matrix $\,$ - depends on α and β

$$\mathbf{D}_{\text{stat, }ii} = \sigma_{m_B,i}^2 + \alpha^2 \sigma_{s,i}^2 + \beta^2 \sigma_{\mathcal{C},i}^2 + \sigma_{\text{int}}^2 + \left(\frac{5\left(1+z_i\right)}{z_i\left(1+z_i/2\right)\log 10}\right)^2 \sigma_{z,i}^2 + \sigma_{\text{lensing}}^2 + \sigma_{\text{host correction}}^2 + C_{m_Bs\mathcal{C},i}$$

 $\frac{\text{Including the systematics}}{C = D_{\text{stat}} + C_{\text{stat}} + C_{\text{sys}}}$

in $C_{sys}\!\!:S_k$ is the kth systematic ; also depends on α and β

$$\mathbf{C}_{\text{sys},ij} = \sum_{k=1}^{K} \left(\frac{\partial \mu_i}{\partial S_k}\right) \left(\frac{\partial \mu_j}{\partial S_k}\right) (\Delta S_k)^2$$

identified systematics :

- calibration
- comparison of different lightcurve fitters
- Malmquist bias
- contamination by core-collapse supernovae
- evolution

etc.

Including the systematics

SNLS-3 extended Hubble Diagram

Universe still accelerating !

For a flat universe : require cosmic acceleration at > 99.999%

SNLS-3 + flat universe (SN only):

Conley et al., 2011

SNLS-3 + flat universe (SN only):

Conley et al., 2011

Sytematics in details :

SNLS

Description		Ω_m	w	Rel. Area ^a	w for $\Omega_m = 0.27$
Stat only		$0.19_{-0.10}^{+0.08}$	$-0.90^{+0.16}_{-0.20}$	1	-1.031 ± 0.058
All systematics		0.18 ± 0.10	$-0.91^{+0.17}_{-0.24}$	1.85	$-1.08^{+0.10}_{-0.11}$
Calibration		$0.191^{+0.095}_{-0.104}$	$-0.92^{+0.17}_{-0.23}$	1.79	-1.06 ± 0.10
SN model		$0.195^{+0.086}_{-0.101}$	$-0.90^{+0.16}_{-0.20}$	1.02	-1.027 ± 0.059
Peculiar velocities		$0.197^{+0.084}_{-0.100}$	$-0.91^{+0.16}_{-0.20}$	1.03	-1.034 ± 0.059
Malmquist bias		$0.198^{+0.084}_{-0.100}$	$-0.91^{+0.16}_{-0.20}$	1.07	-1.037 ± 0.060
Non-Ia contamination		$0.19_{-0.10}^{+0.08}$	$-0.90^{+0.16}_{-0.20}$	1	-1.031 ± 0.058
MW extinction correction		$0.196^{+0.084}_{-0.100}$	$-0.90^{+0.16}_{-0.20}$	1.05	-1.032 ± 0.060
SN evolution		$0.185_{-0.099}^{+0.088}$	$-0.88^{+0.15}_{-0.20}$	1.02	-1.028 ± 0.059
Host relation		$0.198^{+0.085}_{-0.102}$	$-0.91^{+0.16}_{-0.21}$	1.08	-1.034 ± 0.061

Table 7 Identified Systematic Uncertainties

Sample importance:

Conley et al., 2011

SNLS-3 + flat universe (SN only):

SNLS-3 + flat universe (SN only):

Combining SNLS-3 with other cosmological probes :

SNIS

 Cosmic Microwave Background temperature anistropies : WMAP7, Komatsu et al. 2011, Larson et al. 2011 imprint of processes in the photon-baryon fluid at recombination time when the photons escaped at z* ~ 1100

Combining SNLS-3 with other cosmological probes :

Baryon Acoustic oscillations : SDSS Data Release 7, Percival et al., 2010

imprint of same process in the large scale distributions of galaxies observed at z = 0.2 & z = 0.35

SNLS

 \bullet ratio of the spherical average of the angular-diameter distance $D_{\rm V}$

$$D_V(0.35)/D_V(0.2) = 1.736 \pm 0.065$$

• power spectrum of the Luminous Red Galaxies, Reid et al., 2010

Combining SNLS-3 with other cosmological probes :

• H_0 SHOES (Supernovae and H_0 for the Equation of State) Riess et al., 2011

 $H_0 = 73.8 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$

nearby supernovae distances calibrated with absolute cepheid distances (HST); cepheids are themselves calibrated with parallaxes, eclipsing binaries distances ...

$$\Omega_M = 0.274^{+0.019}_{-0.015}, w = -1.068^{+0.08}_{-0.082} \text{ (syst. + stat.)}$$

Sullivan et al, 2011, accepted

supernovae Ia and Dark Energy

- 1. Measuring the Energy Content of the Universe
- 2. Cosmology with type Ia supernovae
- 3. SNLS 3-years analysis & results
- 4. What's next?

- SDSS & SNLS-5 joined analysis
- instrumental calibration
- Stage III & IV projects : SkyMapper, DES, LSST, WFIRST, EUCLID....

Joint SDSS-SNLS analysis

- SNLS data sample
 - 5 yr = 450 SNe Ia + ~ 400 "photometric" Ia for which we are acquiring host spectra

But syst. currently about equal to stat.
=> need to improve (photometric calibration)

- Ongoing joint SDSS-SNLS analysis : + 300 SDSS
 - Cross-calibrate (expected gain : ~2 in calib uncertainty)
 - Joint LC training

« STAGE III » SN programs

Pan-starrs PS1: 1.8m + 7 deg2 2010-2015? (primarily weak lensing) goal : o(1000) up to z=1

DES : CTIO+new 3deg2 mosaic camera 2012-2016 (primarily weak lensing) goal: 3000 SN up to z=1

Skymapper : 1.35m MSSO (Australia) rolling nearby SNIa search (z~0.1) - yield ~100 SN Ia /yr 2011-2014

will address some of possible systematics. very difficult to significantly improve on precision

SkyMapper

anchoring the Hubble Diagram with a SNLS- survey-like @ $z \sim 0.05$

- telescope 1.35-m @ Siding Spring Observatory (Australia)
- wide field imaging : 5.7 deg^2
- 6 filters uvgriz similar to Megacam griz
- Southern Sky Survey : 2π
- Skydice

<u>SkyMapper SuperNova Search :</u>

- rolling search : 1200 deg² observed every 4 days in vgri ~150 SNe Ia discovered / year @ z~0.05
- ~ 450 SNe Ia @ z~0.05 : matching SDSS & SNLS quality
 → dark energy study
- complementary spectro. identification on other telescopes
 starting fall 2011

Stage IV ground based SN projects

• Pan Starrs 4 :

Simultaneous observing with four 1.8m telescopes of 3 deg2 fov (0.3" pixels)

- LSST : => 250000 SN/yr !
- low AND high-z SNe from the same instrument
- repeat imaging (calibration <1%) + « sky calib. »

LSST : Large Synoptic Survey Telescope

a wide and deep field survey

- -nature of dark energy
- solar system
- optical transients
- galactic structure

complementary probe for DE with lensing/BAO: ~ O(10 000) SNe Ia z ~ 0.5-1.4 (photometry only)

Instrument :

- primary mirror 8.4-m @ Chile
- camera 3.2 10⁹ pixels (189 CCDs)
- 9.6 deg²

Survey:

- 10 years, 5 10⁶ images
- 20 000 deg²
- 6 filters UV NIR
- > 3 10^9 galaxies with photo-z

Schedule:

- 2010 : first priority by NAS
- funding NSF/DOE in 2013, first light 2018

Space based cosmology with SN Ia

→ detect/follow distant SN Ia from space

→ first proposed in 1999 (SNAP)

 \$\u03c8\$-2m telescope 0.6 sq. deg.
 Vis+NIR 0.4->1.7 m
 2000 SNe 0.2<z<1.7 in 3 yrs

→ several incarnations : DESTINY, JEDI, JDEM, DUNE, EUCLID, ... now WFIRST, mostly aiming at weak lensing and/or BAO

→ recent study based on a modified EUCLID concept (+filter wheel)

Conclusion

SNe Ia remain excellent distance indicators. Today's precision:
 (+BAO & CMB) : δw(stat+syst)~0.08

- full systematics included

(primary contributor : calibration

& inter-calibration on external photometric systems)

- taking into account host influence

Future :

- SDSS & SNLS-5 joined analysis
- improve nearby sample, understand environement, separate dust from intrinsic effects

- SkyMapper, DES, LSST, WFIRST, EUCLID.... will address some of possible systematics very difficult to significantly improve on precision w(z)

					1										
						100									
2005hk	20051c	2005кв	20061e	2006eb	2006Fo	avent	200516	200614	2009m	2006op	2006nz	2005ku	2006fg	2006hx	2005hc
			1.00												
			•	•			•				•	•		•	
2005m	2006ne	200591	2006eq	2006.)1	2006pc	2006ky	2005hJ	2006ak	2006py	200606	2006kh	20059J	2005ho	20060a	2005kt
						-	Constant of	100			en est		1		
Develo	nuce.	2000	-	ALL	2010-0	AMEL		200514		nuces	a survey	AVE LA	-	aver.	2005-0
200011	200619	Zowong	2000gg	ZWOIT	200601	20001	200013	2006/0	20013	2000rd	awang	zwojs	ZWOP	Zworg	ZWORF
		.				-		-							
200516	2005ed	2005gb	2006ez	2005iu	2005ex	2005je	2005fn	2005ks	2006Fs	2006ps	2006gn	2006ok	20061k	2006fz	2006ho
												147 10			
						1200							1.00	100	
2006ja	2006np	2005ef	2006qJ	2006jq	2006pr	2006jh	2009hn	2009hr	2005m1	2006gF	2009kp	2005Fv	2009hx	2006fc	2006mu
		-	C. Salar			1.1									
		ALLE 14	San San			1.5	1 mater						-		and the second
20051A	200601	2005th	Zubin	200612	SOURCE	2006/15	2006qn	200543	200512	2006ne	200513	2006th	2006FA	200614	200561
				See a				ALC: NO						1242	1.11
2005gp	2006mx	2006nd	2005ez	2005ey	2005hy	2006jh	2006kd	2006pn	2005hz	200664	2005fa	2005kr	20051n	2006m	2006hu
					ande s	Sec. 2			Cher Le						Distance.
					CHE STOR	The Logic		E.C.	• • •				100		
2006eu	2006hu	2006jt	20061s	2006qn	200640	2006hy	20051d	2005fa	2006ex	2006-6	2006h1	2006ju	2006hv	2006pu	2005fu
							80.97								
					26.24		Sec.	1000							
200598	200690	200604	2005gx	2006ah	2005.jk	20064	2005.00	2005Ft	5006Jb	200663	2006/14	2006pe	2006on	200545	2005fa
	12.00			~	1				1.1.1			2			
2005gd	200678	2006qf	2006Fa	2006ey	2005gc	2005/1	2006od	2006F1	200518	2006	2006pb	2005hp	20061a	2006n1	20064
Star Long	•		the set						S. S. S.		100				1
2005j1	2006fn	2006jr	2006.9	2006ро	2006gx	20061b	200631	20061b	200616	2006ku	2005ko	2006ed	2006q1	2006ku Pretici sets nam	200596 17 20
	Personal States						and the s								2 Sugar
B. Dilda	ay, U.Ch	licago			Long 4		Sec. 1	Openty	the second	A state					