

MEASUREMENTS OF ISOLATED PROMPT PHOTONS IN pp COLLISIONS WITH THE ATLAS DETECTOR

Francesco Polci (LPSC Grenoble) on behalf of the ATLAS Collaboration

Europhysics Conference on High-Energy Physics (EPS-HEP 2011, Grenoble)

MOTIVATIONS

- test of perturbative QCD
- sensitive to the gluon content of the proton
- allow to estimate QCD background for Higgs, Graviton, excited fermions and pairs of supersymmetric particles searches

PHOTON RECONSTRUCTION AND IDENTIFICATION (ATL-PHYS-PUB-2011-007)

Francesco Polci ------- HEP2011: Measurement of inclusive isolated prompt photons with ATLAS ------- 2

- Loose selection:
- small energy in the hadronic calorimeter;
- narrow showers in the middle sampling.

•Tight selection:

- tighter cuts in the middle sampling;
- cuts on strip variable (rejecting π^0).
- About **30% of photons converted** in ATLAS:
- the tracker informations are also used;
- dedicated cuts optimization.

CALORIMETER ENERGY ISOLATION: E^{ISO}

Data driven methods for isolation shape!

1) Determine background E_T^{ISO} shape reversing tight cuts.

PHOTON EFFICIENCY

- **Trigger efficiency**: 100% for γ passing offline selection
- *Reconstruction efficiency*: ~85% in barrel, ~70% in end-cap main losses due to dead readout recovered in 2011
- Tight plus isolation efficiency:
- from Monte Carlo γ sample;
- shower shapes shifted according to comparison with data;
- data driven cross-check with in e^{\pm} from *W*,*Z*

INCLUSIVE ISOLATED PROMPT PHOTON CROSS-SECTION MEASUREMENT @ \sqrt{s} = 7 TeV

Phys. Rev. D83, 052005 (2011): L= 0.85 pb⁻¹, 15< $E_{\tau}(\gamma)$ < 100 GeV ATLAS-CONF-2011-058: L= 35 pb⁻¹, 45< $E_{\tau}(\gamma)$ < 400 GeV

Francesco Polci ------ HEP2011: Measurement of inclusive isolated prompt photons with ATLAS ------ 6

BACKGROUND DETERMINATION: SIDEBANDS METHOD

BACKGROUND DETERMINATION: ISOLATION TEMPLATES METHOD

- Signal template from e^{\pm} from W and Z, correcting for e/γ shift with simulations
- Background template from data reversing tight ID criteria.
- Results in agreement with sidebands method within 2%

INCLUSIVE ISOLATED PROMPT PHOTON PRODUCTION CROSS SECTION 1

- Unfolding from E_T response matrix (bin-by-bin, iterative, SVD)
- largest experimental systematics: EM energy scale (3% in test beam, 1.5% from Z)
 => 5-10% on cross-section
- Comparison to NLO pQCD prediction by JetPhox CTEQ 6.6
- Good agreement, except in E_{τ} <35 GeV (region of higher fragmentation contribution)

INCLUSIVE ISOLATED PROMPT PHOTON PRODUCTION CROSS SECTION 2

Systematics from theory:

- CTEQ 6.6 PDFs (MSTW2008: 3-5% difference) uncertainty : 4%->2%
- Fragmentation/factorization/normalization scales: 20% -> 8%
- Parton $E_{T}^{ISO} < 4$ GeV: 2%

DI-PHOTONS CROSS-SECTION MEASUREMENT @ $\sqrt{s} = 7$ TeV

CERN-PH-EP-2011-08: L= 37 pb⁻¹, $E_{\tau}(\gamma) > 16$ GeV

Francesco Polci ------- HEP2011: Measurement of inclusive isolated prompt photons with ATLAS ------- 11

BACKGROUND DETERMINATION: E_{T}^{ISO} **FIT AND SIDEBANDS METHODS**

BACKGROUND DETERMINATION: EVENT WEIGHTING

ISOLATED DI-PHOTON CROSS-SECTION 1

- Comparison to DIPHOX and ResBos predictions using CTEQ 6.6
- Broader distribution observed for $d\sigma/d\Delta\phi$
- Correlated to discrepancies in $d\sigma/dm_{\gamma\gamma}$ for $m_{\gamma\gamma} < 2E_{\tau}$ cut

Francesco Polci ------- HEP2011: Measurement of inclusive isolated prompt photons with ATLAS ------- 14

ISOLATED DIPHOTON CROSS-SECTION 2

- Experimental uncertainties:
- energy scale: +3%, -1%
- simulation of isolation: -7%
- additional material: 10%
- difference PYTHIA vs SHERPA: 5%
- Theoretical uncertainties:
- scales variations: from $1/2m_{\gamma\gamma}$ to $2m_{\gamma\gamma}$
- partonic isolation: 5%
- MSTW 2008: 10% difference from CTEQ6.6

SUMMARY

- *ATLAS* measured in *pp* collisions @ √s = 7 GeV cross sections for:
- the isolated prompt photon production;
- the isolated di-photon production. SEE POSTER BY M. TRIPIANA FOR MORE DETAILS!
- The measurements profit of the good photon efficiency (85% reconstruction, 95% identification) and of the high purity (>95% above 100 GeV) achieved.
- The isolated prompt photon cross-section is:
 - well in agreement with the NLO pQCD calculations for E_{τ} >35GeV;
 - shows some discrepancy for Et<35GeV.
- The isolated di-photon cross section measured shows some disagreement for the azimuth separation of the two photons.
- Beyond NLO calculations and a better theoretical description of the fragmentation are needed to understand the differences.
- In the meanwhile ATLAS is analysing the whole 2011 dataset to provide updated measurements and to extend the energy range explored.

INCLUSIVE PHOTON E_T SPECTRUM WITH 1.08 fb⁻¹

HIGHEST E_{T} (960 GeV) PHOTON CANDIDATE

BACKUP

ISOLATION ENERGY

Use electrons from W, ZStudy e/γ differences on MC, apply to collision data.

TRIGGER AND RECONSTRUCTION EFFICIENCIES

- εtrig (from data): plateau at ~100% for photons passing offline selection 10 GeV threshold 40 GeV threshold $\epsilon_{trig} = (99.4^{+0.6}_{-0.2})\%$ $\varepsilon_{trig} = (99.5 \pm 0.5)\%$ trigger efficiency efficiency 00 ATLAS 0.8 0.8 √s = 7 TeV 0.6 Data 2010, Ldt = 880 nb⁻¹ 0.6 ATLAS Preliminary △ Minimum Bias MC 0.4 0.4 o MC 4 • Data 0.2 0.2 34 50 36 38 40 44 46 48 16 cluster E_T E^Y_T [GeV] • ε_{reco} (from MC): ~80-85% in barrel ($|\eta| < 1.37$), ~70% in end-cap (1.52< $|\eta| < 2.37$)
 - significant part of inefficiency (dead readout) recovered in 2011 winter shutdown
 - uncertainties: extra material not in MC (1-2%), generator and fraction of fragmentation photons (<2%), experimental isolation efficiency (3-4%)

PHOTON DETECTION WITH ATLAS

Ambient transverse energy density

Francesco Polci ------ HEP2011: Measurement of inclusive isolated prompt photons with ATLAS ------ 23

PHOTON OFFLINE SELECTION EFFICIENCY (15-100 GeV, 0.85pb⁻¹)

Francesco Polci ------ HEP2011: Measurement of inclusive isolated prompt photons with ATLAS ------ 24

PHOTON OFFLINE SELECTION EFFICIENCY (45-400 GeV, 35pb⁻¹)

PHOTONS PURITY (15-100 GeV, 0.85pb⁻¹)

Francesco Polci ------ HEP2011: Measurement of inclusive isolated prompt photons with ATLAS ------ 26

PHOTONS PURITY (45-400 GeV, 35pb⁻¹)

PHOTON YIELDS

DIAGRAMS

SINGLE PHOTON CROSS-SECTION SYSTEMATICS

Systematic	Reco. Eff.	ID Eff.	Yield	Unfolding	Theory
Finite Statistics per bin				< 2%	
Generator	1%	< 1%	~ 1%	3%	
E_T Resolution				< 1%	
Photon ID			< 5%		
Photon Isolation			< 1%		
Signal Leakage			2% - 8%		
Background Correlations			< 4%		
Energy Scale			2% - 8%		
Material	1% - 4%	1% – 2%	< 1%		
Soft-jet Energy Density			3% – 7%		
Transverse Energy Leakage			1% – 4%		
Hard/Brem Composition	1%	< 1%	1% – 7%		
OTX	0.2%				
Photon Isolation Cut	3% - 4%				
Intrinsic Precision		1% – 3%			
Photon Sample Selection		0.5%			
Conv/Unconv. Photon Ratio		< 1%			
Scale uncertainty					10% - 20%
PDFs					2% - 5%
Parton level Isolation					< 2%

DI-PHOTONS CROSS-SECTION SYSTEMATICS

$m_{\gamma\gamma}$ [GeV]	Ĩ	Ĩ	matrix	$e \rightarrow \gamma$	ID	material	generator	σ_E	E-scale	$E_{\mathrm{T}}^{\mathrm{iso(part)}}$	$\int L \mathrm{d}t$
0 - 30	$^{+0.03}_{-0.01}$	$^{+0.000}_{-0.005}$	$^{+0.021}_{-0.022}$	$^{+0.002}_{-0.002}$	$^{+0.020}_{-0.017}$	$^{+0.021}_{-0.000}$	+0.03 -0.00	$^{+0.001}_{-0.000}$	$^{+0.006}_{-0.002}$	$^{+0.000}_{-0.010}$	$^{+0.007}_{-0.007}$
30 - 40	$^{+0.17}_{-0.09}$	$^{+0.00}_{-0.05}$	$^{+0.13}_{-0.13}$	+0.008 -0.008	$^{+0.22}_{-0.18}$	$^{+0.3}_{-0.0}$	+0.014 -0.000	$^{+0.003}_{-0.000}$	+0.04 -0.03	+0.00 -0.09	$+0.06 \\ -0.06$
40 - 50	$^{+0.3}_{-0.1}$	$^{+0.00}_{-0.06}$	$^{+0.19}_{-0.19}$	$^{+0.008}_{-0.008}$	$^{+0.24}_{-0.20}$	$^{+0.3}_{-0.0}$	$^{+0.11}_{-0.00}$	$^{+0.024}_{-0.000}$	$^{+0.09}_{-0.03}$	$^{+0.00}_{-0.17}$	$^{+0.08}_{-0.08}$
50 - 60	$^{+0.20}_{-0.13}$	$^{+0.00}_{-0.04}$	$^{+0.14}_{-0.14}$	+0.007 -0.007	$^{+0.15}_{-0.13}$	$+0.19 \\ -0.00$	+0.05 -0.00	$^{+0.003}_{-0.000}$	+0.06 -0.03	$+0.00 \\ -0.13$	$^{+0.06}_{-0.06}$
60 - 70	$^{+0.14}_{-0.06}$	$^{+0.001}_{-0.016}$	+0.09 -0.09	$^{+0.004}_{-0.004}$	$^{+0.05}_{-0.04}$	$^{+0.07}_{-0.00}$	$^{+0.04}_{-0.00}$	$^{+0.007}_{-0.000}$	+0.03 -0.02	$^{+0.00}_{-0.05}$	+0.03 -0.03
70 - 80	$^{+0.06}_{-0.06}$	$^{+0.000}_{-0.007}$	$^{+0.05}_{-0.06}$	$^{+0.003}_{-0.003}$	$^{+0.03}_{-0.03}$	$^{+0.07}_{-0.00}$	$^{+0.03}_{-0.00}$	$^{+0.002}_{-0.001}$	$^{+0.009}_{-0.002}$	$^{+0.00}_{-0.03}$	$^{+0.015}_{-0.015}$
80 - 100	$^{+0.04}_{-0.05}$	$^{+0.000}_{-0.005}$	$+0.04 \\ -0.04$	+0.019 -0.019	$^{+0.03}_{-0.02}$	$+0.04 \\ -0.00$	$^{+0.012}_{-0.000}$	$^{+0.004}_{-0.000}$	+0.013 -0.003	+0.00 -0.03	+0.013 -0.013
100 - 150	$^{+0.019}_{-0.016}$	$^{+0.001}_{-0.001}$	$^{+0.015}_{-0.018}$	$^{+0.001}_{-0.001}$	$^{+0.004}_{-0.003}$	$^{+0.002}_{-0.001}$	$^{+0.004}_{-0.000}$	$^{+0.000}_{-0.001}$	$^{+0.002}_{-0.003}$	$^{+0.000}_{-0.003}$	$^{+0.003}_{-0.003}$
150 - 200	$^{+0.002}_{-0.002}$	+0.000 -0.000	+0.003 -0.003	$^{+0.000}_{-0.000}$	$^{+0.002}_{-0.001}$	$^{+0.004}_{-0.000}$	$^{+0.001}_{-0.000}$	+0.000 -0.000	$^{+0.001}_{-0.000}$	$^{+0.000}_{-0.002}$	$^{+0.001}_{-0.001}$

DI-PHOTONS CROSS-SECTION SYSTEMATICS

$p_{\mathrm{T},\gamma\gamma}$ [GeV]	$\tilde{\mathbf{T}}$	Ĩ	matrix	$e \rightarrow \gamma$	ID	material	generator	σ_E	E-scale	$E_{\mathrm{T}}^{\mathrm{iso(part)}}$	$\int L \mathrm{d}t$
0 - 10	$^{+0.3}_{-0.2}$	$+0.00 \\ -0.09$	+0.3 -0.3	$^{+0.03}_{-0.03}$	$^{+0.4}_{-0.4}$	$^{+0.6}_{-0.0}$	$^{+0.10}_{-0.00}$	+0.03 -0.00	$^{+0.12}_{-0.05}$	+0.0 -0.3	$^{+0.15}_{-0.15}$
10 - 20	$^{+0.3}_{-0.2}$	$^{+0.00}_{-0.05}$	$^{+0.21}_{-0.22}$	$+0.015 \\ -0.015$	$^{+0.20}_{-0.17}$	$^{+0.21}_{-0.00}$	$^{+0.11}_{-0.00}$	$^{+0.001}_{-0.001}$	+0.06 -0.03	+0.00 -0.15	$+0.08 \\ -0.08$
20 - 30	$^{+0.21}_{-0.16}$	$^{+0.000}_{-0.025}$	$+0.13 \\ -0.14$	$^{+0.008}_{-0.008}$	$^{+0.07}_{-0.06}$	$^{+0.10}_{-0.00}$	$+0.022 \\ -0.000$	$^{+0.010}_{-0.000}$	+0.03 -0.02	+0.00 -0.08	$+0.03 \\ -0.03$
30 - 40	$^{+0.13}_{-0.08}$	$^{+0.000}_{-0.012}$	+0.09 -0.10	$^{+0.006}_{-0.006}$	$^{+0.06}_{-0.05}$	$^{+0.11}_{-0.00}$	+0.08 -0.00	$^{+0.007}_{-0.000}$	+0.015 -0.009	+0.00 -0.03	$+0.021 \\ -0.021$
40 - 50	$^{+0.08}_{-0.06}$	$^{+0.000}_{-0.007}$	+0.05 -0.06	$^{+0.004}_{-0.004}$	$^{+0.018}_{-0.017}$	+0.03 -0.00	+0.005 -0.000	$^{+0.000}_{-0.012}$	+0.00 -0.03	$+0.000 \\ -0.015$	$^{+0.009}_{-0.009}$
50 - 60	$^{+0.03}_{-0.03}$	$^{+0.000}_{-0.007}$	$^{+0.02}_{-0.03}$	$^{+0.006}_{-0.006}$	$^{+0.03}_{-0.02}$	$^{+0.04}_{-0.00}$	$^{+0.04}_{-0.00}$	$\substack{+0.013 \\ -0.000}$	+0.05 -0.01	$^{+0.000}_{-0.023}$	$^{+0.012}_{-0.012}$
60 - 80	$^{+0.021}_{-0.023}$	$^{+0.000}_{-0.001}$	+0.014 -0.016	$^{+0.001}_{-0.001}$	$^{+0.003}_{-0.003}$	+0.005 -0.000	$+0.000 \\ -0.004$	$^{+0.000}_{-0.001}$	+0.000 -0.002	+0.000 -0.004	$^{+0.002}_{-0.002}$
80 - 100	$^{+0.006}_{-0.000}$	$^{+0.000}_{-0.001}$	+0.005 -0.005	$^{+0.002}_{-0.002}$	$^{+0.003}_{-0.002}$	$+0.002 \\ -0.006$	+0.000 -0.005	$^{+0.001}_{-0.000}$	+0.004 -0.001	$+0.000 \\ -0.004$	$^{+0.002}_{-0.002}$
100 - 150	$^{+0.002}_{-0.001}$	$^{+0.000}_{-0.000}$	+0.001 -0.002	$^{+0.000}_{-0.000}$	$^{+0.000}_{-0.000}$	+0.000 -0.000	+0.000 -0.001	$^{+0.000}_{-0.000}$	+0.000 -0.000	+0.000 -0.000	$^{+0.000}_{-0.000}$
150 - 200	+0.000 -0.000	+0.000 -0.000	+0.000 -0.000	$^{+0.000}_{-0.000}$	+0.000 -0.000	+0.000 -0.000	+0.000 -0.000	+0.000 -0.000	+0.000 -0.000	+0.000 -0.000	+0.000 -0.000
$\Delta \phi_{\gamma\gamma}$ [rad]	$\tilde{\mathbf{T}}$	Ĩ	matrix	$e \rightarrow \gamma$	ID	material	generator	σ_E	E-scale	$E_{\mathrm{T}}^{\mathrm{iso(part)}}$	$\int L \mathrm{d}t$
0.00 - 1.00	$^{+1.1}_{-0.5}$	$^{+0.00}_{-0.14}$	+0.8 -0.8	$+0.05 \\ -0.05$	$^{+0.4}_{-0.4}$	$^{+0.4}_{-0.0}$	+0.3 -0.0	$^{+0.000}_{-0.017}$	$^{+0.14}_{-0.08}$	+0.0 -0.3	$^{+0.17}_{-0.17}$
1.00 - 2.00	$^{+1.6}_{-1.0}$	$^{+0.0}_{-0.3}$	$^{+1.2}_{-1.2}$	$^{+0.07}_{-0.07}$	$^{+0.8}_{-0.7}$	$^{+1.0}_{-0.0}$	$^{+0.5}_{-0.0}$	$+0.023 \\ -0.000$	+0.23 -0.10	+0.0 -0.5	$^{+0.3}_{-0.3}$
2.00 - 2.50	$^{+3}_{-2}$	$^{+0.0}_{-0.4}$	$^{+2.2}_{-2.3}$	$^{+0.17}_{-0.17}$	$^{+2.2}_{-1.8}$	+3 -0	$^{+1.5}_{-0.0}$	$^{+0.10}_{-0.00}$	$^{+0.6}_{-0.4}$	$^{+0.0}_{-1.3}$	$^{+0.8}_{-0.8}$
2.50 - 2.80	$^{+6}_{-5}$	$^{+0.0}_{-1.3}$	$^{+5}_{-5}$	$^{+0.4}_{-0.4}$	$^{+5}_{-4}$	+6 -0	+0.3 -0.0	$^{+0.4}_{-0.0}$	$^{+1.8}_{-1.0}$	$^{+0}_{-4}$	$^{+1.9}_{-1.9}$
2.80 - 3.00	$^{+11}_{-5}$	$^{+0}_{-3}$	$^{+9}_{-10}$	$^{+0.9}_{-0.9}$	$^{+11}_{-9}$	$^{+14}_{-0}$	$^{+2.3}_{-0.0}$	$^{+0.7}_{-0.0}$	$^{+4}_{-1}$	+0 -9	$^{+4}_{-4}$
3.00 - 3.14	+19 -16	+0 -3	$^{+14}_{-15}$	$^{+1.5}_{-1.5}$	$^{+16}_{-13}$	$^{+18}_{-0}$	-0 -0	$^{+0.6}_{-0.0}$	$^{+4}_{-2}$	$^{+0}_{-12}$	$^{+6}_{-6}$