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Outline

Jet energy scale and resolution in the ATLAS experiment:
Quantifying the performance of jet reconstruction

Motivation:

Hadronic jets: hard objects widely produced at the LHC

Understanding of jets and QCD crucial for physics at the LHC:

Standard Model jet measurements in a new kinematic regime
(P. Francavilla, D. Miller’s talks)
Dijet/multijet: possible hints to new physics
(A. Gibson, A. Taffard’s talks)
Jets are essential ingredient in top analyses
(M. Costa, P. Ferrari, D. Hirschbuel’s talks)

This talk:

Selected ATLAS results on jet reconstruction performance:
jet energy scale and resolution
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Jet energy scale – Jet calibration

Jet reconstruction in ATLAS

Jet finding: from partons/particles/energy deposits to jets

[Cacciari, Salam, Soyez
JHEP 0804:063,2008]

Energy deposits → noise-suppressed 3D clusters:
exploit transverse and longitudinal calorimeter segmentation

Jet inputs clustered with anti-kT algorithm:

Infrared safe, collinear safe (⇒ NLO comparisons)

Regular, cone-like jets in calorimeters

Distance parameter 0.4, 0.6

Jet calibration: restore the jet energy scale (JES)

Calorimeter jet response needs to be corrected for :

Non-compensating calorimeters

Inactive material

Out-of-cone effects

⇒ calibrate the jet kinematics to the hadronic scale

JES uncertainty:

Main uncertainty source for
many physics measurements:

jet/dijet cross section,
top mass...
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Jet energy scale – Jet calibration

Calibration schemes in ATLAS

Baseline calorimeter energy scale: electromagnetic scale

Extracted from Z → ee, electron test beams, MIP µ

ATLAS default: EM+JES Calibration [ATLAS-CONF-2011-032]

Data-derived offset pile-up subtraction [ATLAS-CONF-2011-030]

Restore average JES with (η, E)-dependent calibration constants from MC

Allows direct estimation of JES uncertainty

Undergoing commissioning (improved performance) [ATLAS-CONF-2010-053]:

Global Sequential Calibration (GS) :
Exploit longitudinal and transverse energy deposition in calorimeter layers

Global Cell Weighting (GCW) :
Use cell energy density to weight cells within jet

Local Cluster Weighting (LCW) :
Factorized corrections derived from cluster properties in single pion MC,

independent from jet context
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Jet energy scale – Jet calibration

Pile-up in jet reconstruction and calibration

In-time pile-up (2010 and 2011): multiple interactions in same bunch crossing
→ additional soft diffuse radiation

Measure extra energy per calorimeter tower (∆φ×∆η = 0.1 x 0.1)

from minimum bias data (Tower-level offset: ∆EEMT )

Subtract additional per-jet, per vertex offset (for 2010 EM+JES jets only)

Validate correction using jets with tracks from primary vertex
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Jet energy scale – Jet calibration

Pile-up in jet reconstruction and calibration

Out-of-time pile-up (2011): overlapping signal from collisions in other bunch crossings
→ affects calorimeter energy reconstruction

Compensation of in-time/out-of-time pile-up in ATLAS calorimeter readout
→ Negative energy contribution to signal from other bunch crossings

Change in the baseline energy scale accounted for in jet calibration

Offset used to estimate additional JES uncertainty
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Jet energy scale – Jet energy scale

Jet energy scale uncertainty in ATLAS (EM+JES)

Estimate JES uncertainty using:
isolated hadron response uncertainties (in-situ/test beam)

Monte Carlo samples with systematic variations

pT balance in dijet events

in-situ measurements in case of pile-up
(added separately as f(NPV ), on average <3% for low pT central jets)

Before collisions:
<6.5% for central jets, pT =200 GeV
<10% for endcap jets
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After analysis of 2010 collision data:
<2.5% for central jets, pT =100 GeV
<9 (14)% for endcap (forward) jets
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Jet energy scale – Jet energy scale

Jet energy scale uncertainty in ATLAS (EM+JES)

Estimate JES uncertainty using:
isolated hadron response uncertainties (in-situ/test beam)

Monte Carlo samples with systematic variations

pT balance in dijet events

in-situ measurements in case of pile-up
(added separately as f(NPV ), on average <3% for low pT central jets)

2011 analyses: initial estimate of pile-up uncertainty

Keep 2010 JES uncertainty as baseline

Add pile-up uncertainty from data/MC comparison of expected offset:

20 < pjetT < 50 GeV: ⊕ 5% for central jets, ⊕ 7% for forward jets

50 < pjetT < 100 GeV: ⊕ 2% for central jets, ⊕ 3% for forward jets

Validate average JES and uncertainty using in-situ measurements
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Jet energy scale – Jet energy scale

JES uncertainty due to calorimeter EM response

Propagate single isolated hadron uncertainties to jets
to obtain estimate of calorimeter ∆JES

⇒ uncertainty constrained by in-situ measurements

Data used to evaluate calorimeter uncertainties:

Isolated tracks matched to calorimeter clusters (E/p): 0.5 < p < 20 GeV

Average hadronic response in calorimeters described by MC within 2-5%
[ATLAS-CONF-2011-028]
Use of resonances for particle identification [ATLAS-CONF-2011-019]

2004 combined ATLAS test-beam: 20 < p < 350 GeV
[ATL-TILECAL-PUB-2009-007]

Additional sources of single hadron uncertainties include:
calorimeter acceptance, absolute EM energy scale, dead material

Total calorimeter contribution to JES uncertainty: 1.5-4%
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Jet energy scale – Jet energy scale

JES uncertainty due to calorimeter EM response

Propagate single isolated hadron uncertainties to jets
to obtain estimate of calorimeter ∆JES

⇒ uncertainty constrained by in-situ measurements

Full bin-by-bin correlation matrix available for calorimeter uncertainty:
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Jet energy scale – Validation with in-situ techniques

In-situ validation of the JES: 2010 data

In-situ techniques used to validate
JES and its uncertainty

use well calibrated object(s)
as reference for jet pT

compare calibrated jets in data and
Monte Carlo simulation

Techniques used in ATLAS:

Balance high pT jet with recoil system

(Multi-jet / MJB)

[ATLAS-CONF-2011-029]

γ-jet direct pT balance
[ATLAS-CONF-2011-031]

Missing-ET projection fraction
(MPF ) [ATLAS-CONF-2011-031]

Compare calorimeter jets to track-jets
[ATLAS-CONF-2011-068]

Z → ee-jet pT balance (2011 only)
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in data vs Monte Carlo

→ cross-check of JES uncertainty
up to jet pT ≈ 1 TeV
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Jet energy scale – Validation with in-situ techniques

In-situ validation of the JES: 2011 data

Increased pile-up in 2011 data
⇒ new jet energy scale, no pile-up correction

Need to validate MC-based JES
with in-situ techniques

MPF, Z+jets:
data/MC differences in 2011 baseline
JES covered by 2011 JES uncertainty

Multi-jet balance:
good understanding of JES up to
pT=1.4 TeV
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Jet energy resolution – Estimating the jet energy resolution in ATLAS

Estimating the jet energy resolution (JER)

Knowledge of JER necessary for data unfolding/evaluating systematics
Two independent in-situ techniques to estimate JER and compare to MC

Dijet balance method [D0, hep-ex/0012046v2]

Based on momentum conservation in
transverse plane for dijet events

Method systematics (2010): ≈ 5-8%

p
T

1

p
T

2

Bisector method [UA2, CERN-EP-83-94]

Based on decomposition of vector sum of two
leading jets

Method systematics (2010): ≈ 3-4%
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Jet energy resolution – Results for 2010 and 2011 data

Jet energy resolution in 2010

Data (points) / MC (fit) agreement within uncertainties for EM+JES jets
(bisector method shown)
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Jet energy resolution – Results for 2010 and 2011 data

Jet energy resolution in 2011

Comparison with 2010 resolution:

Increase of JER at low pT wrt 2010, within 10% elsewhere
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Conclusions

Conclusions and outlook

Good understanding of the jet energy scale and resolution
in 2010 and 2011 ATLAS data

Jet energy scale and uncertainty

Default MC-based calibration allows for direct estimate of JES uncertainty

Average pile-up conditions accounted for in calibration:
Pile-up correction in place for 2010, being developed for 2011

Current JES uncertainty: 3-4% for central jets with pT > 100 GeV

JES and uncertainty validated with in-situ techniques

Jet energy resolution (JER)

Two independent techniques to measure JER with data

Comparison to MC: good agreement for 2010 data

Expect improvements in JER when refined jet calibrations applied
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Backup slides
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Backup slides – The ATLAS detector

The ATLAS inner detector and calorimeters

Inner detector
Pixel detectors, semiconductor tracker (SCT), transition radiation tracker

≈ 87M readout channels, coverage up to |η| <2.5
Immersed in 2T solenoidal magnetic field

Electromagnetic and hadronic calorimeters
Subsystem technology and granularity ↔ shower characteristics

transverse and longitudinal sampling
fine granularity: ≈ 200 000 readout cells up to |η| <4.9

Energy deposits grouped in noise-suppressed 3D topological clusters
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Backup slides – The ATLAS detector

ATLAS calorimeters: expected performance

EM barrel/endcap
(LAr/EMEC):
Pb/LAr accordion
σ/E ≈ 10−17%/

√
E⊕0.7%

HAD barrel (Tile):
Fe/scintillator tiles:
σ/E ≈ 50%/

√
E ⊕ 3%

HAD endcap (HEC):
Cu/LAr
σ/E ≈ 50%/

√
E ⊕ 3%

EM/HAD forward (FCal):
Cu/W-LAr
σ/E ≈ 100%/

√
E ⊕ 10%

Performance of the ATLAS detector: [JINST 2008 3 S08001, JHEP 09 (2010) 056]
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Backup slides – ATLAS calorimeters and out-of-time pile-up

ATLAS LAr calorimeters: out-of-time pile-up

Signal readout time for LAr calorimeters: 500 ns:

Use bipolar shaping with time constant to
minimize electronics + pile-up noise [IEEE Trans. Nucl. Sci. 53 (2006) 735-740]

Shaping leads to negative contribution in pulse shape

(a) Triangular pulse of the current for a LAr cell and

output signal after bi-polar shaping.

(b) Noise level as function of peak shaping time

tp for various LHC luminosities, with bunch cross-

ings every 25 ns
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Backup slides – ATLAS calorimeters and out-of-time pile-up

ATLAS LAr calorimeters: out-of-time pile-up

Signal readout time for LAr calorimeters: 500 ns:

Use bipolar shaping with time constant to
minimize electronics + pile-up noise [IEEE Trans. Nucl. Sci. 53 (2006) 735-740]

Shaping leads to negative contribution in pulse shape

Pulse shape in 2009 beam splash events

17 / 23
C. Doglioni - 21/07/2011 - EPS HEP, Grenoble

N

http://cdsweb.cern.ch/record/1035600


Backup slides – ATLAS calorimeters and out-of-time pile-up

Effect of pileup on mean tower energy

Average calorimeter tower transverse energy < E
EM
T,tower > as a function of the distance from the

last empty bunch in the current bunch train for different average number of interactions < µ >

Beginning of bunch train: larger < EEMT,tower > due to incomplete cancellation in
calorimeter read-out ⇒ out-of-time pileup

Variation of peak amplitude with < µ >: depends on conditions of current bunch
⇒ in-time pileup

Cancellation of in/out-of-time pileup happens away from train beginning/end
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Backup slides – Jet calibration

Jet calibration chain in ATLAS in 2010

Calorimeter
energy 

deposits

TopoClusters
(EM scale)

Jets
(uncalibrated)

TopoClusters
(EM scale)

Offset
correction

TopoClusters
(EM scale)

Origin
correction

TopoClusters
(EM scale)

EM+JES
Energy, 

eta correction

Jets
(EM+JES)

1 Pileup OFFSET correction: subtract average
additional energy due to pile-up

Use correction constants measured in-situ

2 ORIGIN correction: correct jet position

Jet originates from primary interaction vertex

3 EM+JES calibration: restore jet energy/position (η)

Derive correction factors from Monte Carlo Pythia sample
tuned to ATLAS data

Pile-up offset correction

For a given luminosity L , number of primary vertices NPV , η :
1 Calculate average extra energy per tower as a function of NPV: 〈∆ET,tower〉

2 Calculate number of towers per jet (take average for topocluster jet): Ntowers

3 Derive offset to subtract jet by jet: O(η,NPV ,L) = 〈∆ET,tower〉 ·Ntowers

⇒ Correction only applied on events with NPV >1 in 2010 data
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Backup slides – Jet energy scale

JES flavour and topology dependence

JES and uncertainty: derived assuming q/g composition in MC, isolated jets
⇒ consider dependence of response of jet on parton initiating the jet

(specific fragmentation/showering) [ATLAS-CONF-2011-053]
⇒ consider effect due to close-by jets [ATLAS-CONF-2011-062]

Determine sample flavour
composition using template fits to jet
properties (not yet applied)

Compare calorimeter jets to track jets
with close-by topologies

Additional JES uncertainty
contributions:

Flavour uncertainty:
How much does the response of the sample

differ from the response of the inclusive jet

sample?

Flavour composition:
How well is the average flavour content of

the sample known?

Close-by jets:
How well does the MC describe the

response of close-by jets?
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using templates derived from di-jet MC sample
(fraction of HQ-jets is taken from simulation).
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Backup slides – Jet energy scale

In-situ validation of the JES: 2011 vs 2010
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Backup slides – Jet energy resolution

Jet energy resolution in 2011: data vs MC
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Increased pile-up conditions affects data/MC comparison in jet resolution
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Backup slides – Jet energy resolution

Jet energy resolution in 2011

EM+JES vs Local Cluster Weighting:

Relative improvement of more than 30% if using Local Cluster Weighting
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