Measurement of single and multi-jet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with ATLAS

> Paolo Francavilla Universitá di Pisa School of Graduate Studies "G. Galilei" On behalf of the ATLAS Collaboration

Europhysics Conference on High-Energy Physics 2011 Grenoble – 20-27/07/2011

Jets in the LHC era

At the Large Hadron Collider (LHC), jet production is the dominant high transverse-momentum (p_{τ}) process.

It gives the first glimpse of physics at the TeV scale.

Jet cross sections and properties are key observables in high-energy particle physics. Measured in e^+e^- , ep, $p\overline{p}$, and pp colliders, and in γp and $\gamma \gamma$ collisions.

- •Measurements of the strong coupling constant.
- •Information about the structure of the proton.
- •Tools for understanding the strong interaction.
- •Tools for searching for physics beyond the Standard Model.

ATLAS Detector

ALL IN

ATLAS DRIGSTAT BIOCAP 1

Highest p, di-jet pair in 2010

EPS-HEP 2011 - Grenoble 21-07-2011

P. Francavilla

Date: 2010-10-25 05:59:48 CEST

Dataset

Measurement of the jet cross sections at √s= 7 TeV Probing perturbative QCD over 10 order of Magnitude NEW KINEMATIC REGIME

EPS-HEP 2011 - Grenoble 21-07-2011

Theoretical Prediction Fixed (next-to-leading) order calculations Z. Nagy, Phys. Rev. D68 (2003) 094002 \rightarrow NLOjet++, POWHEG S. Alioli et al arXiv:1012.3380 [hep-ph], **Parton showers** arXiv:1002.2581[hep-ph] \rightarrow In Q², p_{τ}^2 or angle (Herwig, Pythia, Sherpa) M. Bahr et al. Eur. Phys. J. C58 (2008) 639-707. Matched to tree-level ME G. Corcella et al., JHEP 01 (2001) 010 \rightarrow High multiplicities (Alpgen, Sherpa) \rightarrow Higher order (POWHEG) T. Sjostrand, S. Mrenna, P. Skands, JHEP 05 (2006) 026. Also other large logarithms can be implemented \rightarrow HEJ fully re-summed, inspired by BFKL evolution^{T.} Gleisberg et al., J. High Energy Phys. 02 007 (2009). Make comparisons at the particle level M. L. Mangano et al., JHEP 07 Physically well-defined (2003) 001. - Requires application of soft corrections J. R. Andersen and J. M. Smillie. arXiv:1007.4449 [hep-ph], (Underlying event, hadronization) to the NLO arXiv:1101.5394 [hep-ph]. Data unfolding and systematics Measurement corrected back to particle level by bin-by-bin single correction. Systematics uncertainties on: \rightarrow Jet energy scale (dominant uncertainty) see C. Doglioni's talk \rightarrow Jet energy resolution \rightarrow Jet angular resolution, recon. efficiency, modeling of spectral shape in MC EPS-HEP 2011 - Grenoble 21-07-2011 P. Francavilla 6

Cross Section: Inclusive single and di-jet

Inclusive jet: Ratios with NLO theory R=0.6

Inclusive jet: Ratios with Powheg

R=0.6

Di-jet systems

Di-jet azimuthal decorrelation: arXiv:1102.2696 Transverse momentum: $p_{T} > 100 \text{ GeV}$ Rapidity: |y| < 2.8 $\Delta \varphi$ Leading 2 jets in p_{τ} , with $|y_1| < 0.8$, $|y_2| < 0.8$ arXiv:1107.1641 Di-jet production with a veto: Transverse momentum: $p_{-} > 20 \text{ GeV}$ Rapidity: |y| < 4.4Jet selection criteria: 1) Leading 2 jets in p_{τ} 2) Most forward and most backward Gap veto: if a jet with p_>Q_=20 GeV in the rapidity gap inside the di-jet syste $\overline{p_{\tau}} = (p_{\tau_1} + p_{\tau_2})/2 > 50 \text{ GeV}$ $\Delta y = |y_1 - y_2|$ Gap fraction=(# events passing the Gap veto)/(all events)

Jet algorithm: anti- k_{T} jets R=0.6Integrated luminosity: 37 pb⁻¹

EPS-HEP 2011 - Grenoble 21-07-2011

Di-jet azimuthal decorrelation

Indirect way to test extra radiation in the di-jet system

MC predictions (and NLO) generally describe the measured spectra.

Di-jet systems

Di-jet azimuthal decorrelation:	arXiv:1102.2696
Transverse momentum: p_{τ} >100 GeV	✓ Rapidity: <i>y</i> < 2.8
$\Delta \varphi$ Leading 2 jets in $p_{_{ m T}}$, v	with $ y_1 < 0.8$, $ y_2 < 0.8$
Di-jet production with a veto:	arXiv:1107.1641
Transverse momentum: $p_{\tau} > 20$ GeV	Rapidity: $ y < 4.4$
Jet selection criteria:	
1) Leading 2 jets in p_{τ}	2) Most forward and most backward
Gap veto: if a jet with p _τ >Q ₀ =20 GeV in the	rapidity gap inside the di-jet system
$\Delta y = y_1 - y_2 $	$\overline{p_{\tau}} = (p_{\tau_1} + p_{\tau_2})/2 > 50 \text{ GeV}$
Gap fraction=(# events pa	ssing the Gap veto)/(all events)
Jet algorithm: anti-k _T jets <i>R</i> =0.6	

Integrated luminosity: 37 pb⁻¹

EPS-HEP 2011 - Grenoble 21-07-2011

Multi-jets cross sections

- A first step toward the measurement of complex QCD final states •Important as a measurement in itself
- •Fundamental to start the controls for the QCD background for searches.

Transverse momentum: $p_{T} > 60 \text{ GeV}$ Rapidity: |y| < 2.8Leading jet: $p_{T1} > 80 \text{ GeV}$. Multi-Jet cross section: Jet multiplicity p_{T} spectrum for the 1st, 2nd, 3rd, 4th jet (ordered in p_{T}) $H_{T} = \Sigma p_{T}$ distribution for different multiplicity Ratio $\mathbb{R}^{32}(H_{T}^{(2)}) = d\sigma^{N \ge 3}/dH_{T}^{(2)}/d\sigma^{N \ge 2}/dH_{T}^{(2)}$

Jet Algorithm: anti- k_{T} jets with *R*=0.4 (and *R*=0.6 for testing NLO) **Integrated Luminosity:** 2.43 pb⁻¹

Multi-jets cross sections

Alpgen describes better the data. Pythia has a factor 0.65

(In gray the relative sys. error with respect to the first bin)

Inclusive variable to describe the events.

The ratio reduces the systematics

Conclusions

Exciting period for the QCD analysis at LHC

A rich program of QCD measurements begun with the LHC collisions.

ATLAS is performing very well, triggering on and measuring jets over a huge range

Most of the analysis have been improved in the last months: By a deeper understanding of the detector (smaller systematic) By increasing the statistics

Ready to digest the 1st fb⁻¹ of data recorded in 2011

BACKUP

Di-jet cross section compared with Powheg

Cross Section: Inclusive single and di-jet

ATLAS-CONF-2011-047 Inclusive single jet cross sections: $d^2\sigma/dp_{\tau} d|y|$ Transverse momentum: $p_{\tau} > 20 \text{ GeV}$ Rapidity: |y| < 4.4Di-jet cross-sections: $d^2\sigma/dM_{1,2} d|y|_{max}$ $M_{1,2}$ is invariant mass of first two leading jets with p_{T_1} > 30 GeV and $p_{_{T_2}}$ > 20 GeV $|y|_{max} = max(|y_1|, |y_2|)$ with y_1 and y_2 rapidity of two leading jets $|y|_{max} < 2.8$

Jet algorithm: anti- k_{T} jets with *R*=0.4 and *R*=0.6 **Integrated luminosity:** 37 pb⁻¹

M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804 (2008) 063