Exotics Searches in Photon and Lepton Final States with the ATLAS Detector

Tetiana Berger-Hryn'ova
(LAPP, Annecy le Vieux)
behalf of the ATLAS collaboration

EPS, Grenoble, France

Introduction

Searching for New Physics ...

- 2010: 45pb⁻¹ recorded
- 2011 (till 1/07): 1.23fb⁻¹ recorded
- Peak Lumi of 1.26x10³³ cm⁻²s⁻¹
- 6 interactions per BC on average

New Heavy Gauge Bosons

Search for New Physics in Lepton + E_T^{Miss}New

See posters by S. Heim & S. Viel for details

2 m [TeV]

1.6

1.8

Contact Interactions

- Four-fermion contact interactions (CI) at low energy limit describe phenomena as:
 - Large Extra Dimension ADD Model
 - Quark-lepton compositeness
- Benchmark: left-left isoscalar model

$$\frac{d\sigma}{dm_{\mu\mu}} = \frac{d\sigma_{DY}}{dm_{\mu\mu}} - \eta_{LL}\frac{F_I(m_{\mu\mu})}{\Lambda^2} + \frac{F_C(m_{\mu\mu})}{\Lambda^4}$$

- $F_{I(C)}$ is interference (CI) term, $\eta_{LL}=\pm 1$
- Λ is the energy scale (below which fermion constituences are bound)
- No excess, limits at 95% CL:
 - Λ⁻>4.9TeV for constructive interference
 - Λ^+ >4.5TeV for destructive interference

arxiv:1104.4398 accepted by PRD

Searches for Extra Dimensions

Search for New Physics in Same-sign dimuons

- Benchmark Model: Large ED ADD Model
- M_D is the Planck scale in n+4 D ($M_D < < M_{Pl}$)
- If there are ED and M_D~1TeV, microscopic black holes (BH) can be produced at LHC
- Assume continuous BH production from M_D to LHC $\sqrt{s}=7$ TeV, but remove mass region (M_{TH}) close to M_D where classical BH production and semi-classical BH decay approximations are not valid
- Strategy:
 - Select events with same sign di muons, with at least one being isolated, to minimize SM bkgs
 - Look at track multiplicity distribution
- No excess over SM expectations seen
- 95% CL limit on σ×A×BF of new physics in this final state is 0.184pb
- Exclusion plots in low scale gravity model
- ATLAS-CONF-2011-065

Search for New Physics in Diphotons

- Benchmark Signal RS Gravitons (G)
- 5-D space-time bound by two 3+1D branes with SM particles localized on one and gravity on the other
- Only G propagate in bulk resulting in massive spin- 2 Kaluza-Klein (KK) excitations
- Narrow intrinsic width if k/M_{Pl}<0.1 (k is space-time curvature in ED)
- Graviton decays to SM fermions or bosons: Diphoton branching fraction is twice higher than dilepton one
- Data consistent with SM predictions
- Limit @ 95% CL >920(545) GeV for k/M_{Pl}=0.1(0.02)

See poster by X. Anduaga for more details

ATLAS-CONF-2011-044

Search for New Physics in Dileptons New

See posters by S. Heim & S. Viel for more details

Search for New Physics in Diphoton + E_T^{Miss}

- Benchmark: effective theory of one TeV⁻¹ size UED valid at $\Lambda > 1/R$ (R = ED size)
 - SM particles in bulk \Rightarrow KK excitations
 - Mass degeneracy of KK excitations broken by radiative corrections
 - Lowest KK particle γ^* decays to γ +Graviton
- Expect excess of UED events at high E_T^{Miss} :
 - No events observed in $E_T^{Miss} > 125 GeV$
 - Background events expected 0.10±0.04(stat)±0.05(syst)
- UL @ 95% CL on σ<0.18-0.23pb for 1/R=700-1200GeV in UED model
- At 36pb⁻¹ exclude @95% CL 1/R<961GeV

Other Searches

Search for Leptoquarks

arxiv:1104.4481, accepted by PRD

- Benchmark model: leptoquarks (LQ)
- Look for pair production of particles with both lepton and baryon quantum numbers
- Consider 2 lepton + 2 jets and lepton + 2 jets + E_T^{Miss} final states

More on lvjj channel

Events / 10 GeV

6000

5000

4000

3000

2000

1000

0.6

٥

50

100

Data/MC

GeV

events / 5

stat.

- CDF has reported an excess of 4.1σ at ~145GeV in jj mass distribution in lvjj channel with 7.3fb⁻¹ of data
- This channel is not optimal at LHC with W+jet bkg 20 times higher, but this can be model dependent
- Selection: $p_T^j > 30 \text{GeV}$, $p_T^e > 25 \text{GeV} p_T^{\mu} > 20 \text{GeV}$, p_T^{ij} >40GeV, E_T^{Miss} >25GeV, M_T^W >40GeV, $|\Delta \eta|$ <2.5, $|\Delta \phi^{j_{1},ETMiss}| > 0.4 GeV$

Preliminary

ww + wz

al SM (Syst. Unc.

• Looked at $N_i=2$ (shown) and $N_i\geq 2$ (in backup)

 $L dt = 1.02 \text{ fb}^{-1}$

e+µ, Njet = 2

200

150

250

300

350

ATLAS

No significant excess over Standard Model processes seen in 1.02fb⁻¹ of data ATL-CONF-2011-097 15

400

M_{ii} [GeV]

Search for Massive Long-Lived Highly Ionising Particles

- Search for massive long-lived HIP: concentrate on large mass (>100GeV), non-relativistic speed, charges 6-17e (Q-balls, stable micro black holes)
- Signal has high ionization in tracker, narrow calorimeter deposits
- No events pass selection shown above (96% efficient for signal)

Cross-section limits @ 95% CLCross-section limits at 95% CL in pb assumingin pb for any modelDrell-Yan-like production mechanism

<i>m</i> [GeV]	q = 6e	q = 10e	q = 17e	<i>m</i> [GeV]	q = 6e	q = 10e	q = 17e
200	1.4	1.2	2.1	200	11.5	5.9	9.1
500	1.2	1.2	1.6	500	7.2	4.3	5.3
1000	2.2	1.2	1.5	1000	9.3	3.4	4.3

arXiv: 1102.0459, PLB698:353-370,2011

Conclusion

- LHC is working very well
- ATLAS detector is efficiently collecting data
- We are well on the way searching for New Physic
 - A lot of limits are reaching ~1TeV range
 - Distributions so far consistent with SM expectation
 - Previous limits substantially improved

• We already have more than 1fb⁻¹ of data, more exciting results from ATLAS to come...

Backup Slides

W' and Z' limits vs other expriments

No significant excess over Standard Model processes seen in 1.02fb⁻¹ of data ATL-CONF-2011-097

Why go beyond the Standard Model?

- Standard Model combines electroweak and strong theory describes data very well but Does not include gravity Higgs boson is not found yet SM is low energy effective theory
- Why three families of quarks and leptons? Are they elementary?
- Too many free parameters
- Symmetry between EM & weak forces is broken
- Strong and EW forces are not unified
- Hierarchy problem

New physics is needed at the weak scale $\sim 1 {\rm TeV}$

2

ATLAS Detector

EM Calorimeter: $|\eta| < 4.9$

- Barrel/Endcap: accordion-shaped Pb/LAr
- 3 longitudinal layers at $|\eta|{<}2.5$
- $\sigma_{\rm E}/{\rm E}$ = 10%/ $\sqrt{{\rm E}}$ \oplus 24.5%/ ${\rm E}$ \oplus 0.7%

Trigger/DAQ:

uon Det

- Input rate ~1 GHz
- Rate to tape ~400 Hz

Muon Spectrometer : $|\eta| < 2.7$

- In air-core toroid with gas detectors
- Barrel: Resistive Plate Chambers & Cathode Strip Chambers
- Endcap: Thin Gap Chambers and Monitored Drift Tubes
- Standalone:

σ(p)/p=3%(0.1TeV)-10%(1TeV)

Inner Detector: $|\eta| < 2.5$

- 3 layers of Pixel Detector
- 4 layers of Semi-Conductor Tracker
- 73-layer Transition Radiation Detector (TRT) [only within $|\eta|$ <2.0]
- In 2T solenoidal magnetic field
- σ(p_T)/p_T=(0.034p_T/GeV⊕1.5)%

Hadronic Calorimeters:

- 3 layers of scintillating tile/steel to $|\eta|$ <1.7
- 4 layers copper/LAr for 1.5<| η |<3.2