SUSY Flavour at LHC7

Joel Jones-Pérez INFN – Laboratori Nazionali di Frascati

In Collaboration with L. Calibbi, R. N. Hodgkinson, A. Masiero and O. Vives

> EPS-HEP 2011 Grenoble, 22/07/2011

We need to wait until we get some statistics...

http://xkcd.com

LHC 7 TeV Run

- Last year's luminosity expectations for December 2011: 1 fb⁻¹
- Big Question: What if we see some new physics signal? How can flavour help to tell if it is consistent with the MSSM?
- Objective: Analyze the region of the parameter space that LHC can probe.
 - If we get a signal, what can flavour physics tell us?
 - Can there be a flavour feedback to colliders?

Outline

Models of Interest and LHC Reach

• Flavour Constraints

• Analysis of Specific Models

Models of Interest

• CMSSM

Can give us a general idea of what we should expect. Useful as an initial benchmark.

Models of Interest

• CMSSM

Can give us a general idea of what we should expect. Useful as an initial benchmark.

• CMSSM + v_{R}

Well-motivated expansion that allows us to probe flavour in the lepton sector. Results are very model-dependent.

Models of Interest

• CMSSM

Can give us a general idea of what we should expect. Useful as an initial benchmark.

• CMSSM + v_{R}

Well-motivated expansion that allows us to probe flavour in the lepton sector. Results are very model-dependent.

• CMSSM + SU(3)_F: RVV Model

Example of a way of entangling all flavour-dependent observables. Results are heavily model-dependent.

Collider Issues

- Main problem of analyzing the CMSSM is to estimate the LHC constraints and reach in a four-dimensional parameter space.
- Full collider simulation at each point in order to find out if it is ruled out or not?? Not feasible!

Collider Issues

Some results depend strongly only on m₀ and M_{1/2}!

- Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in sqrt(s) = 7 TeV proton-proton collisions. (1102.5290 [hep-ex])
- Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy. (1101.1628 [hep-ex])

It seems possible to do a scan on the CMSSM parameter space without doing a collider simulation.

Collider Issues

Some results depend strongly only on m₀ and M_{1/2}!

- Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in sqrt(s) = 7 TeV proton-proton collisions. (1102.5290 [hep-ex])
- Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy. (1101.1628 [hep-ex])

It seems possible to do a scan on the CMSSM parameter space without doing a collider simulation.

Scan shall use a modified version of SPheno 3.1.3

Porod (hep-ph/0301101) Porod, Staub (1104.1573 [hep-ph])

Relevant Parameter Space for 2 fb⁻¹

ATLAS Collaboration (1102.5290 [hep-ex])

Baer, Barger, Lessa, Tata (1004.3594 [hep-ph])

Relevant Parameter Space for 2 fb⁻¹

Feldman et al (1102.2548 [hep-ph])

Direct Search + Higgs Constraints

 m_0

 m_0

Constraints

The Role of $B_s \rightarrow \mu \mu$

- LHCb with 2 fb⁻¹
 - Exclusion of BR(B_c -> $\mu \mu$) down to 4x10⁻⁹, 95% C.L.
 - 3σ evidence of BR(B_s -> $\mu \mu$) down to $5x10^{-9}$.

- 5σ discovery of BR(B_s -> $\mu \mu$) down to $9x10^{-9}$.

R. Lambert @ Moriond

The Role of $B_s \rightarrow \mu \mu$

- LHCb with 2 fb⁻¹
 - Exclusion of BR(B_s -> $\mu \mu$) down to 4x10⁻⁹, 95% C.L.
 - 3σ evidence of BR(B_s -> $\mu \mu$) down to $5x10^{-9}$.

- 5σ discovery of BR(B_s -> $\mu \mu$) down to $9x10^{-9}$.

R. Lambert @ Moriond

• CDF with 7 fb⁻¹

$$-BR(B_{s} \rightarrow \mu \mu) = (1.8 \pm 1) \times 10^{-8}$$

CDF Collaboration (1107.2304 [hep-ex])

Exclusion due to $B_s \rightarrow \mu \mu$

 $BR(B_s \to \mu\mu) < 4 \times 10^{-9}$

 m_0

A Large $B_s \rightarrow \mu \mu$ $\square BR(B_s \to \mu\mu) > 5 \times 10^{-9}$ $\square BR(B_s \to \mu\mu) > 9 \times 10^{-9}$

 m_0

A Large $B_s \rightarrow \mu \mu$ $\square BR(B_s \to \mu\mu) > 5 \times 10^{-9}$ $\square BR(B_s \to \mu\mu) > 9 \times 10^{-9}$

2σ Constraints

 $BR(B_s \to \mu\mu) > 4 \times 10^{-9}$

 $BR\left(B_s \to \mu\mu\right) < 4 \times 10^{-9}$

2σ Constraints

What about the Lepton Sector?

• First Assumption: $Y_{\nu} \sim Y_{u}$

Masiero, Vempati, Vives (hep-ph/0209303)

What about the Lepton Sector?

- First Assumption: $Y_{\nu} \sim Y_{u}$
- Mixings:
 - CKM-like

$$Y_{\nu} = V_{\rm CKM} Y_u^{\rm diag}$$

– PMNS-like

 $Y_{\nu} = V_{\rm PMNS} Y_u^{\rm diag}$

Masiero, Vempati, Vives (hep-ph/0209303)

Comparing CKM and PMNS

Comparing CKM and PMNS

Comparing CKM and PMNS

RVV Models

- Flavour model based on SU(3) symmetry.
- Structure and phases in SUSY sector related to structure and phases in SM Yukawa sector.
- Capable of solving flavour tension in $\epsilon_{_{\rm K}}$, sin2 β and $\Delta m_{_{\rm B}}/\Delta m_{_{\rm Bs}}$.

Ross, Velasco-Sevilla, Vives (hep-ph/0401064) Calibbi, JJP, Masiero, Park, Porod, Vives (0907.4069 [hep-ph])

RVV Models

• $\varepsilon_{_{\rm K}}$ and sin2 β become a crucial source of constraints.

RVV Models Parameter Space

 3σ constraints, solution of Flavour Tension + LFV reduce the parameter space considerably!

RVV Model and Leptons

Such a reduced parameter space allows to make very definite predictions.

For RVV to survive, MEG and eEDM experiments should give a positive signal soon!

Disclaimer: Upcoming conclusions should be valid for models with a CMSSM-like structure, i.e. universal $M_{1/2}$, m_0 , a_0 .

HANDLE WITH CARE

- Flavour and collider physics are complementary, as expected.
- If LHC gives a positive signal, flavour can give important hints in favour / against SUSY.
- 2σ constraints + B_s -> μ μ separate CMSSM
 parameter space into two regions, which can be differentiated in a collider.

- SUSY SeeSaw models can be constrained by combination of LHC, T2K, (g-2)_μ and MEGA.
- Models with large v Yukawas with PMNS mixing not in a good situation.
- Models with large v Yukawas with CKM mixing should survive, but give no interesting signal.

- Low SUSY masses and flavour constraints push RVV flavour models into a particular region of the parameter space.
- Solution of flavour problem is still possible.
- MEG + eEDM experiments crucial for the model.

Ze Backoupé

Current LHC Constraints

ATLAS Collaboration (1102.5290 [hep-ex])

Future Reach

No lepton channel:

Baer, Barger, Lessa, Tata (1004.3594 [hep-ph])

 $b \to s\gamma$

 $(g-2)_{\mu}$

 m_0

 $(g-2)_{\mu}$

Exclusion due to $B_s \rightarrow \mu \mu$

$BR(B_s \to \mu\mu) < 4 \times 10^{-9}$

2σ Constraints

2σ Constraints

"Milder" Yukawas

 $Y_{\nu} = \kappa_{\nu} V_{\rm PMNS} Y_u^{\rm diag} \qquad \qquad \kappa_{\nu} = 0.01 - 1$

 $\sin^2 2\theta_{13} = 0.03 - 0.28$

"Milder" Yukawas

 $Y_{\nu} = \kappa_{\nu} V_{\rm PMNS} Y_u^{\rm diag} \qquad \qquad \kappa_{\nu} = 0.01 - 1$

 $\sin^2 2\theta_{13} = 0.03 - 0.28$

RVV Models Parameter Space

 3σ constraints, solution of Flavour Tension + LFV reduce the parameter space considerably!

