Search for $B^0_{s(d)} \to \mu^+\mu^-$ with CMS

Urs Langenegger (PSI)

 $for \ the \ CMS \ collaboration$

EPS HEP Grenoble 2011/07/22

- Introduction
 - motivation and methodology
 - ▷ detector
- Analysis
 - signal and normalization
 - pileup is not an issue
- Results with $1.14 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7 \, {\rm TeV}$ Abstract #206

Motivation: search for new physics

- Decays highly suppressed in Standard Model
 - effective FCNC, helicity suppression
 - SM expectation:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$$
(Buras 2010)

 $\begin{array}{l} \triangleright \ \, {\rm Cabibbo-enhancement} \ (|V_{ts}|>|V_{td}|) \\ {\rm of} \ \, B^0_s \rightarrow \mu^+\mu^- \ {\rm over} \ B^0 \rightarrow \mu^+\mu^- \\ {\rm only \ in \ MFV \ models} \end{array}$

Indirect sensitivity to new physics

- ▷ 2HDM: $\mathcal{B} \propto (\tan \beta)^4, m_{H^+}$; MSSM: $\mathcal{B} \propto (\tan \beta)^6$
- \rightarrow sensitivity to extended Higgs boson sectors
- \rightarrow constraints on parameter regions
- $B_s^0 \to \mu^+ \mu^-$ considered as golden channel
 - high sensitivity to new physics and small theoretical uncertainties
 - ightarrow especially in connection with $B^0
 ightarrow \mu^+\mu^-$

JINST 3, S08004 (2008)

The CMS detector

CMS-PAS-MUO-10-002

CMS Experiment at LHC, CERN

Run/Event: 132440 / 2738170

Orbit/Crossina: 32326252 / 1

umi section: 124

Data recorded: Tue Mar 30 12:58:48 2010 CEST

(cm)

700

600

500

400

300

200

100

CMS

Muon reconstruction

- \bullet Large muon acceptance $|\eta|<2.4$
 - drift tubes
 - cathode strip chambers
 - resistive plate chambers
- 3 muon reconstruction algorithms
 - standalone muon: reconstructed in muon system only
 - ▷ global muon ('GM'): outside-in standalone muon \rightarrow to inner track
 - ▷ tracker muon ('TM'): inside-out inner track → muon detector

1000

1200

7 (cm)

Analysis overview

- Signal $B^0_s \to \mu^+ \mu^$
 - two muons from one decay vertex mass around m_{B⁰_s} long-lived B well reconstructed secondary vertex momentum aligned with flight direction

Background

- two semileptonic (B) decays (gluon splitting)
- \triangleright one semileptonic (B) decay and one misidentified hadron
- \triangleright rare single B decays
 - peaking $(B_s^0 \to K^+ K^-)$
 - non-peaking ($B_s^0 \to K^- \mu^+ \nu$)
- \rightarrow mass resolution
- \rightarrow not well-reconstructed secondary vertex
- \rightarrow pointing angle

\Rightarrow High signal efficiency and high background reduction

B

Methodology

• Measurement of $B_s^0 \to \mu^+ \mu^-$ relative to normalization channel: similar trigger and selection to reduce systematic uncertainties

$$\begin{split} \mathcal{B}(B_s^0 \to \mu^+ \mu^-; 95\% \mathrm{C.L.}) &= \frac{N(n_{obs}, n_B, n_S; 95\% \mathrm{C.L.})}{\varepsilon_{B_s^0} N_{B_s^0}} = \frac{N(n_{obs}, n_B, n_S)}{\varepsilon_{B_s^0} \mathcal{L} \,\sigma(pp \to B_s^0)} \\ &= \frac{N(n_{obs}, n_B, n_S)}{N(B^\pm \to J/\psi \,K^\pm)} \frac{A_{B^+}}{A_{B_s^0}} \frac{\varepsilon_{B^+}^{ana}}{\varepsilon_{B_s^0}^{ana}} \frac{\varepsilon_{B^+}^{\mu}}{\varepsilon_{B_s^0}^{bn}} \frac{\varepsilon_{B^+}^{trig}}{\varepsilon_{B_s^0}^{bn}} \frac{f_u}{\varepsilon_{B_s^0}^{trig}} \frac{f_u}{f_s} \mathcal{B}(B^+ \to J/\psi \,[\mu^+ \mu^-]K) \end{split}$$

- Calibration of MC with exclusively reconstructed decays
 - $\triangleright B^{\pm} \rightarrow J/\psi K^{\pm}$: normalization with high statistics Candidates
 - $\triangleright B^0_s \rightarrow J/\psi \phi$: B^0_s signal MC (p_{\perp} and isolation)
- Analysis in two channels
 - ▶ barrel (both muons $|\eta| < 1.4$): better signal/background ratio \rightarrow better sensitivity good mass resolution (36 MeV)
 - \triangleright endcap (at least one muon with $|\eta| > 1.4$): add more statistics

Blind analysis

Trigger: $B_s^0 \to \mu^+ \mu^-$ and $B^{\pm} \to J/\psi K^{\pm}$

- Dimuon trigger
 - L1 (hardware) trigger a few kHz at current peak luminosities
 - High-level trigger full tracking and vertexing
- HLT $B_s^0 \rightarrow \mu^+ \mu^$
 - two muons with opposite charge
 - ▷ inv. mass $4.8 < m_{\mu\mu} < 6.0 \,\text{GeV}$
 - \triangleright distance of closest approach $d_{ca} < 0.5 \,\mathrm{cm}$
 - ▷ single muon $p_{\perp} > 2 \text{ GeV}$, dimuon $p_{\perp} > 4 \text{ GeV}$
- HLT $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B^0_s \rightarrow J/\psi \phi$
 - ▶ two muons with opposite charge, $2.9 < m_{\mu\mu} < 3.3 \,\text{GeV}$
 - \triangleright distance of closest approach $d_{ca} < 0.5 \,\mathrm{cm}$
 - ▷ single muon $p_{\perp} > 3 \,\text{GeV}$, dimuon $p_{\perp} > 6.9 \,\text{GeV}$
 - ▷ $\cos \alpha > 0.9$, $\mathcal{P}(\chi^2/dof) > 0.5\%$
 - \rightarrow 'displaced' J/ψ

Trigger efficiency pprox 80%

- after analysis selection
- constant over time

Determination

- MC simulation
- ⊳ data
- \rightarrow systematics from difference

1.14 fb⁻¹ at $\sqrt{s} = 7$ TeV taken in 2011

Signal selection

- Background in sidebands (4.9 < m < 5.2 GeV and 5.45 < m < 5.9 GeV)
 ▶ blinded region 5.2 < m < 5.45 GeV
- Optimized for best upper limit (grid search)
 > selection frozen before unblinding
- Discriminating variables
 - \triangleright muon ID (GM and TM), muon and dimuon p_{\perp}
 - $\triangleright\,$ pointing angle α
 - ▶ flight length significance $\ell_{3d}/\sigma(\ell_{3d})$

Search for $B^0_{s(d)}
ightarrow \mu^+ \mu^-$ with the CMS experiment (2011/07/22)

Isolation

- in cone around dimuon momentum
- $\triangleright\,$ for tracks in cone with $\Delta R < 1$
 - with $p_{\perp} > 0.9 \,\mathrm{GeV}$
 - either associated to same PV as candidate

CMS 2011, 1.14 fb⁻¹, Preliminary $\sqrt{s} = 7 \text{ TeV}$

Data

 $B_s^0 \rightarrow \mu^+\mu^-$ (MC)

0.4

0.6

CMS 2011, 1.14 fb⁻¹, Preliminary

0.8

isolation

0.2

200

150

100

50

Candidates

MC simulation vs. data

In general good agreement

CMS 2011, 1.14 fb⁻¹, Preliminary

CMS 2011, 1.14 fb⁻¹, Preliminary

Pileup independence

- Pileup independence checked
 - Signal MC event samples with pileup
 - Data: efficiency of selection vs. number of primary vertices \triangleright isolation

flight length significance

 \rightarrow no concern at least until $N_{PV} \leq 12$ (currently: $\langle N_{PV} \rangle \approx 5.5$)

11

Final selection: normalization sample

same selection as for signal

differences between barrel and endcap

Variable		Barrel	Endcap	units
$p_{\perp_{\mu_1}}$	>	4.5	4.5	GeV
$p_{\perp \mu_2}$	>	4.0	4.0	GeV
$p_{\perp B}$	>	6.5	6.5	GeV
χ^2/dof	<	1.6	1.6	
α	<	0.050	0.025	rad
$\ell_{3d}/\sigma(\ell_{3d})$	>	15.0	20.0	
Ι	>	0.75	0.75	
d_{ca}^0	>	n/a	0.015	cm

for normalization additionally require two muons bending away from each other

Variable	Barrel	Endcap	
Acceptance	$(16.14 \pm 0.65) \times 10^{-2}$	$(11.12 \pm 0.45) \times 10^{-2}$	
$arepsilon_{ m analysis}$	$(0.68 \pm 0.03) \times 10^{-2}$	$(0.34 \pm 0.02) \times 10^{-2}$	
$arepsilon_{ ext{tot}}$	$(0.77 \pm 0.08) \times 10^{-3}$	$(0.27 \pm 0.03) \times 10^{-3}$	
$N_{ m obs}$	13045 ± 663	4450 ± 244	

Systematics (5%) dominated by background pdf

Expectations and observation

	Bar	rel	Endcap	
	$B^0 \to \mu^+ \mu^-$	$B_s^0 o \mu^+ \mu^-$	$B^0 o \mu^+ \mu^-$	$B_s^0 o \mu^+ \mu^-$
Acceptance	$(24.62 \pm 0.99) \times 10^{-2}$	$(24.72 \pm 0.99) \times 10^{-2}$	$(22.61 \pm 0.91) \times 10^{-2}$	$(23.14 \pm 0.93) \times 10^{-2}$
$\varepsilon_{\rm analysis}$	$(2.23 \pm 0.19) \times 10^{-2}$	$(2.22 \pm 0.19) \times 10^{-2}$	$(1.16 \pm 0.10) \times 10^{-2}$	$(1.24 \pm 0.11) \times 10^{-2}$
$\varepsilon_{\rm tot}$	$(0.36 \pm 0.04) \times 10^{-2}$	$(0.36 \pm 0.04) \times 10^{-2}$	$(0.21 \pm 0.02) \times 10^{-2}$	$(0.21 \pm 0.02) \times 10^{-2}$
$N_{ m signal}^{ m exp}$	0.065 ± 0.011	0.80 ± 0.16	0.025 ± 0.004	0.36 ± 0.07
$N_{ m bg}^{ m exp}$	0.40 ± 0.23	0.60 ± 0.35	0.53 ± 0.27	0.80 ± 0.40
$N_{ m peak}^{ m exp}$	0.25 ± 0.06	0.07 ± 0.02	0.16 ± 0.04	0.04 ± 0.01
N _{obs}	0	2	1	1

Search for $B^0_{s(d)} \rightarrow \mu^+ \mu^-$ with the CMS experiment (2011/07/22)

Results

- Upper limits and significance for $B^0_s o \mu^+ \mu^-$ and $B^0 o \mu^+ \mu^-$
 - $\triangleright~\mathrm{CL}_{\mathrm{s}}$ and CL_{b}
 - ▷ Input from PDG $f_u = 0.401 \pm 0.013$ $f_s = 0.113 \pm 0.013$

$$\mathcal{B}(B^+) = (6.0 \pm 0.2) \times 10^{-5}$$

Upper limits

Systematics and cross checks

 Background, studied from inverted isolation sample: loosened selection 	4%
 Signal ▷ acceptance: difference between production processes ▷ analysis efficiency: comparison of data and MC ▷ mass scale (resolution) from J/ψ and Υ(1S) 	4% 7.9% 3%
 Normalization analysis efficiency: comparison of data and MC kaon tracking efficiency yield fitting 	4% 3.9% 5%
 Muon identification and trigger estimated through difference of MC and data-driven methods muon identification efficiency ratio trigger efficiency ratio 	5% 3%
- Cross checks performed sample yield vs time, $\mathcal{B}(B^0_s \to J/\psi\phi)$, inverted isolation yield	

Urs Langenegger

Search for $B^0_{s(d)}
ightarrow \mu^+ \mu^-$ with the CMS experiment (2011/07/22)

Conclusions and outlook

- Search for $B^0_{s(d)} \to \mu^+ \mu^-$ with $1.14 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7 \, {\rm TeV}$
 - no signal found beyond SM expectation
 - determine upper limits

 $\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &< 1.9 \times 10^{-8} \quad (95\% \, \text{C.L.}) \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 4.6 \times 10^{-9} \quad (95\% \, \text{C.L.}) \end{aligned}$

impact on new physics models

- Bright prospects
 - background events not irreducible
 - upgrade to multi-variate analysis
 - \rightarrow looking forward to

LHC's increasing luminosity