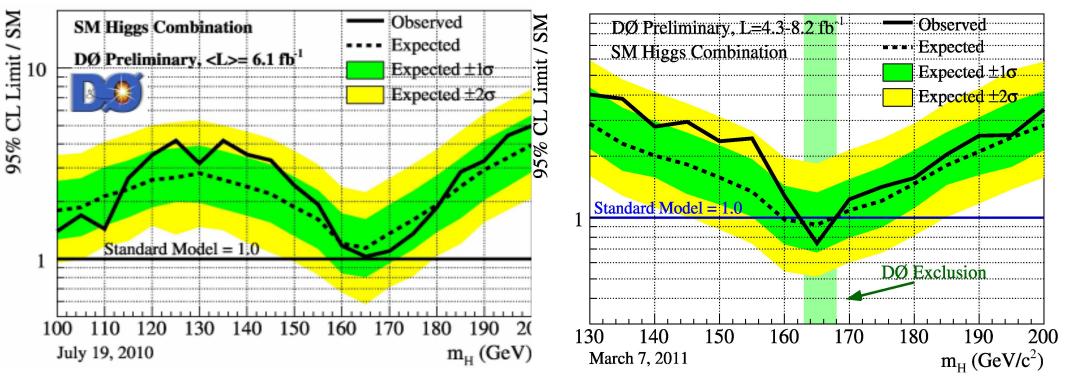


Combined upper limits on SM Higgs


Sebastien Greder, IPHC / IN2P3-CNRS, Strasbourg on behalf of the D0 collaboration

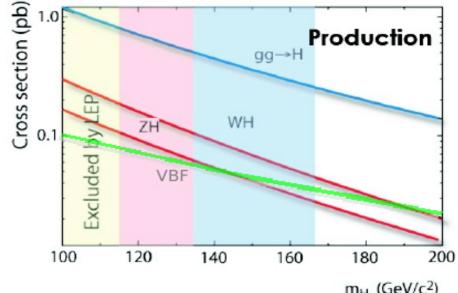
Introduction

Previous combination:

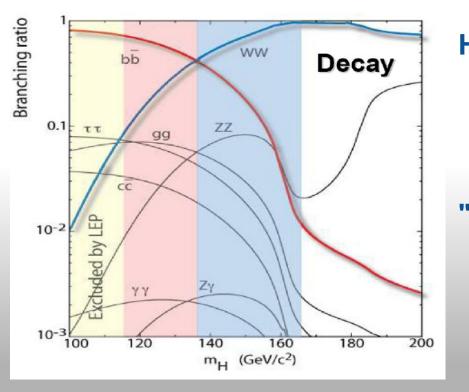
March 2011, single experiment exclusion: 163 < m_H < 168 GeV/c² at 95% C.L

For more details see:

http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/HIGGS/H105/

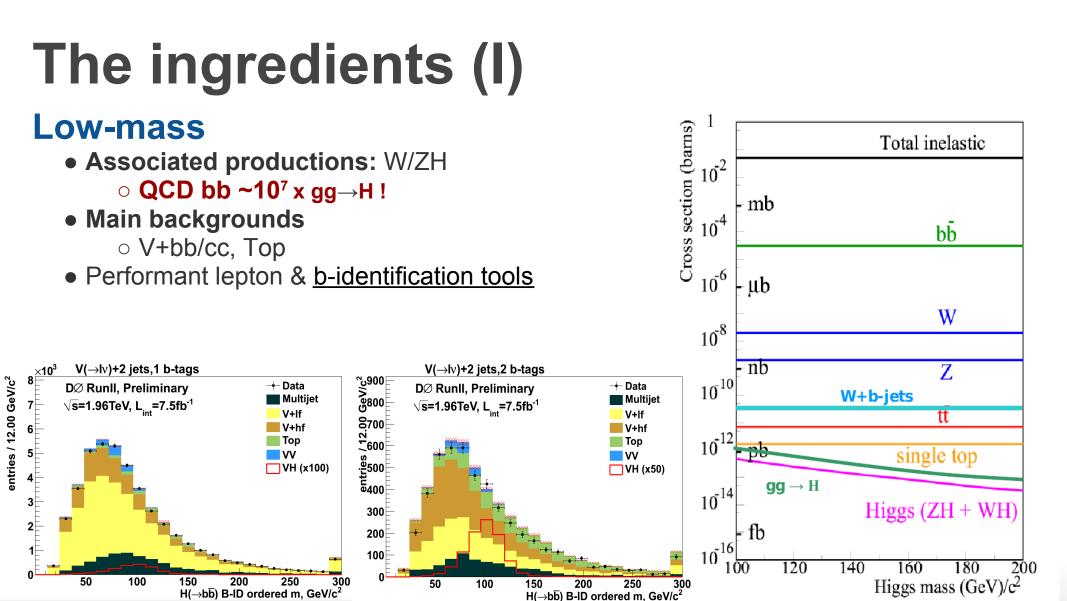

Production and decays

Higgs production cross sections


• ~ 0.02 - 1.3 pb

 investigate 3 productions modes Analyzed data correspond to integrated luminosities ranging from 4.3 to 8.6 fb⁻¹

~7000 Higgs events


 m_H (GeV/c²)

Higgs boson decay modes studied: ○ H→bb (cc) $\circ H \rightarrow W^+W^ \circ$ H \rightarrow T⁺T⁻ $\circ H \rightarrow \gamma \gamma$ "Low" vs. "High" mass regions: \circ m_H < 135 GeV : bb о m_µ > 135 GeV : WW

2

See talks from:

- **POTAMIANOS, Karolos:** Search for the Standard Model Higgs boson in final states with b quarks at the Tevatron
- KASMI, Azeddine: Search for the Standard Model Higgs boson in final states with photons or taus at the Tevatron

3

The ingredients (II)

High mass

- H→WW→lvlv + 1,2 jets
- $H \rightarrow WW \rightarrow Vqq' (I = e, \mu)$ Phys. Rev. Lett. 106, 171802 (2011)
- H \rightarrow WW \rightarrow IvT_{had}v + 0, 1, 2 jets

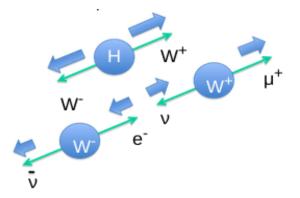
Main backgrounds

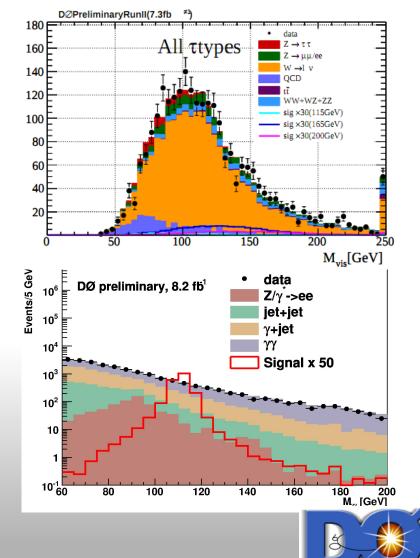
- multijet
- bosons pairs
- top pairs

To complete the picture

- $VH \rightarrow WWW \rightarrow II+X$
- $\bullet ~ H \rightarrow \! \gamma \gamma$

Boris Tuchming


Search for the Higgs boson in the W^+W^- decay at Tevatron


Antonio LIMOSANI

Other searches for a high mass Higgs boson at Tevatron

KASMI, Azeddine

Search for the Standard Model Higgs boson in final with photons or taus at Tevatron

The ingredients (III)

Improving sensitivity

• Most of analyses improve their overall sensitivity by splitting e.g jet multiplicities,

lepton flavors, 1/2 b-jet(s), ...

40 exclusive subsets

• Multivariate techniques e.g Neural Networks, Decisions Trees

• Analyses updated with > 8fb⁻¹ datasets

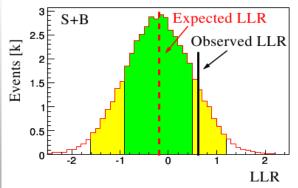
Channel	Luminosity (fb^{-1})	Final Variable	# Sub-Channels	
$WH \rightarrow \ell \nu b \bar{b}$, ST/DT, 2/3 jet	8.6	DTree discriminant	24	
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$, ST/DT	8.6	DTree discriminant	6	
$ZH \rightarrow \ell \ell b \bar{b}$, ST/DT	8.6	DTree discriminant	30	
$H \rightarrow W^+ W^- \rightarrow \ell^{\pm} \nu \ell^{\mp} \nu, \ 0/1/2 + \text{ jet}$	8.1	DTree discriminant	18	
$H \rightarrow W^+ W^- \rightarrow \ell \nu q \bar{q}$	5.4	DTree discriminant	4	
$H + X \rightarrow \mu^{\pm} \tau_{had}^{\mp} + \leq 1j$	7.3	NN discriminant	3	
$ \begin{array}{l} H + X \to \mu^{\pm} \tau_{had}^{\mp} + \leq 1j \\ H + X \to \ell^{\pm} \tau_{had}^{\mp} jj \end{array} $	4.3	DTree discriminant	2	
$VH \rightarrow \ell^{\pm} \ell^{\pm} + X$	5.3	DTree discriminant	6	
$H \rightarrow \gamma \gamma$	8.2	DTree discriminant	1	

Limit setting

Frequentist approach: modified CL_s

generate ensemble of pseudo-experiments with Poisson statistics

 test 2 hypotheses: background (B) and signal+background (S+B)
 compute negative log likelihood ratio (LLR):


$$\frac{L(B)}{\prod_{i} \frac{b_{i}^{d_{i}} \exp(b_{i})}{d_{i}!}} \qquad \frac{L(S+B)}{\prod_{i} \frac{(s_{i}+b_{i})^{d_{i}} \exp(s_{i}+b_{i})}{d_{i}!}}{2 \cdot \sum_{i} s_{i} - d_{i} \cdot \log(1+s_{i}/b_{i})}$$

where d_i events observed in bin *i* with S and B expectations s_i and b_i .

- systematics are introduced through nuisance parameters
 - constrained by data (*i.e profiling technique*)
- Confidence Levels (C.L.) are defined as the fraction of pseudo-experiments with LLR above the observed LLR
 ³E SUB - The Expected LLR

•
$$CL_s = CL_{s+b}/CL_b$$

Exclude a signal cross section at x% C.L. with: CL_s = 1 - x

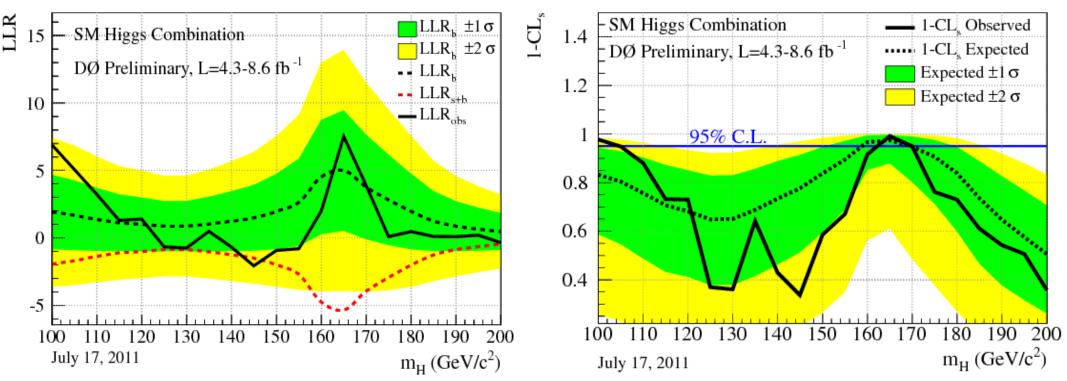
Systematics

2 types for background and signal

- rate: only affect absolute normalization, *e.g luminosity*
- **shape:** change differential distribution, *e.g due to jet energy scale corrections, MC modeling, b-tagging, ...*

Sources

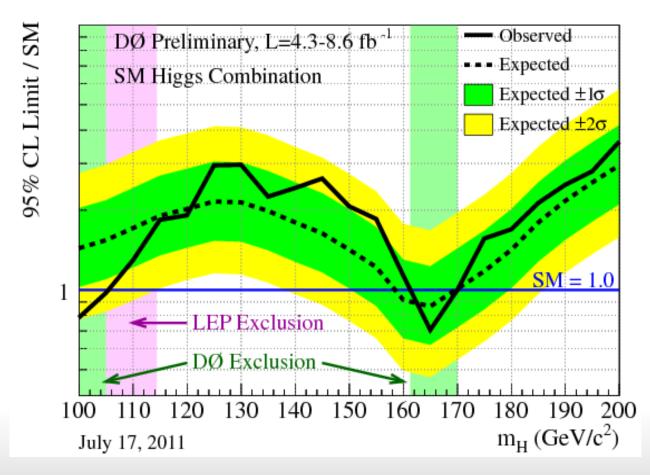
depend on the final state


 Iuminosity 	~6%
 lepton identification 	1-9%
 Jet-ID, Jet energy scale, FSR/ISR 	~7%
 b-tagging 	1-10%
 cross-sections 	4-30%

See back-up slides for detailed low/high mass analyses examples + correlation tables

8

Results (I)


Sensitivity of Higgs search

- \bullet Separation between $\text{LLR}_{\rm b}$ and $\text{LLR}_{\rm s+b}$ translates to sensitivity of the analysis
- Maximum around ~165 GeV/c²
- Observation consistent with background only hypothesis
 set exclusion limits at 95% CL

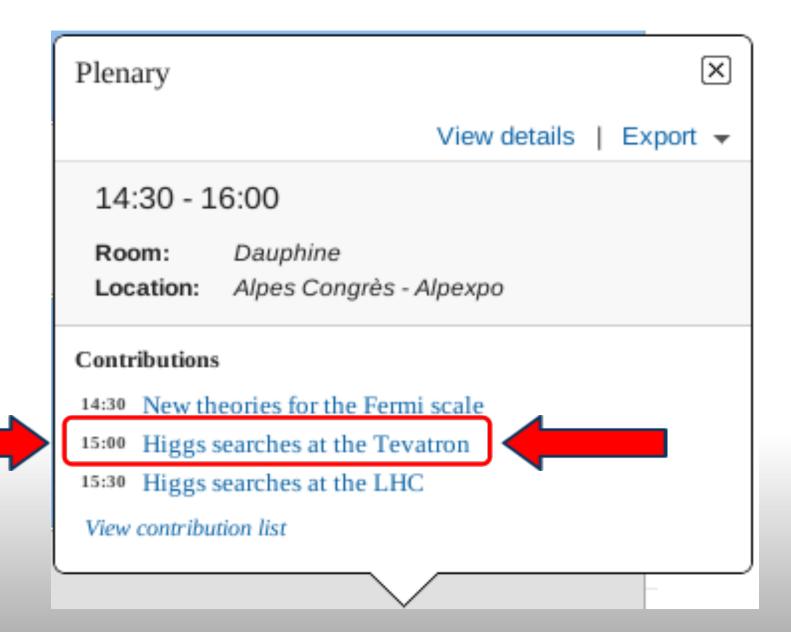
Results (II)

95% C.L upper cross section limits as ratio to SM cross section

~25% improvements accross the whole mass range since last combination !

- 162 < m_H < 170 GeV is excluded at 95% C.L (*expected:* 159 < m_H < 169 GeV)
- m_H(115 GeV): 2.05 (1.90) xSM, m_H(165 GeV): 0.71 (0.87) xSM

Summary


- Searches for SM Higgs boson production in pp collisions at $\sqrt{s} = 1.96$ TeV were carried out for Higgs boson masses in the range 100 < m_H < 200 GeV
 - o no excess seen ...
 - exclude: 162 < m_H < 170 GeV at 95% C.L
 - o < ~2x SM (expected) accross whole mass range !</p>
 - More: <u>http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm</u>

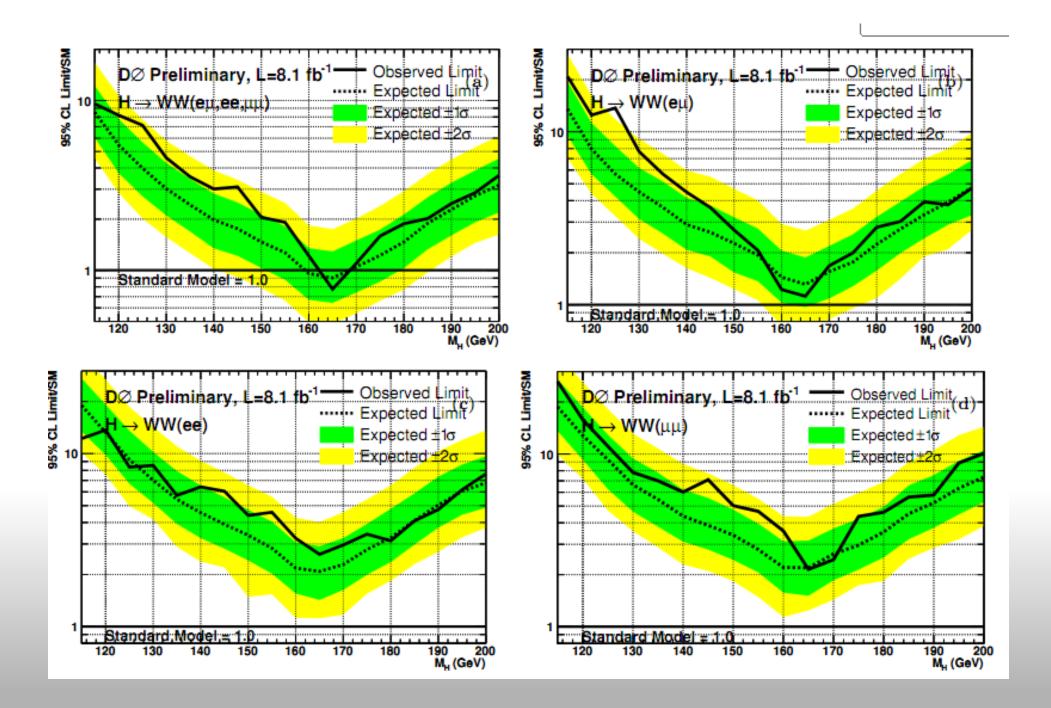
But ...

- More data to analyze (>10fb⁻¹ on tape)
- More analyses improvements in line
- Exciting times !
- Stay tuned for future updates !

Conclusions / Outlooks

Back-up slides

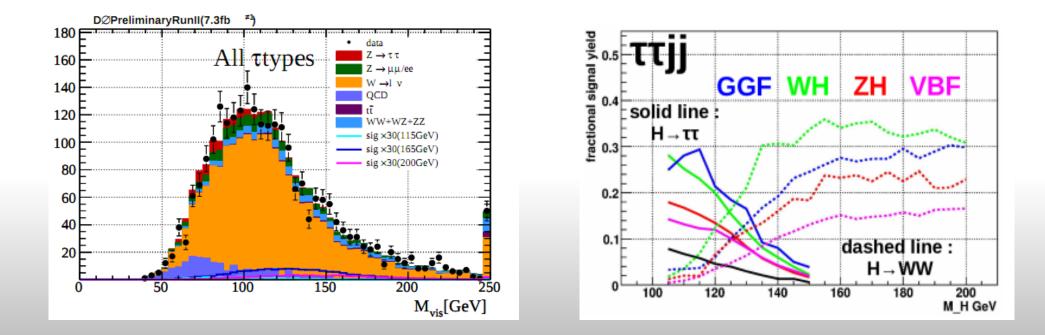
Contribution	WZ/WW	Wbb/Wcc	Wjj/Wcj	$t\bar{t}$	single top	Multijet	WH
Luminosity	6.1	6.1	6.1	6.1	6.1	n/a	6.1
EM ID/Trigger eff. (S)	2-5	2 - 3	2-3	1 - 2	1 - 2	n/a	1 - 2
Muon Trigger eff. (S)	2-4	1 - 2	1 - 2	2-4	1 - 3	n/a	2-5
Muon ID/Reco eff./resol.	4.1	4.1	4.1	4.1	4.1	n/a	4.1
Jet ID/Reco eff. (S)	2-8	2-5	4 - 9	3 - 7	2-4	n/a	3 - 7
Jet Resolution (S)	4-7	2 - 7	2-7	2 - 9	2-4	n/a	4-6
Jet Energy Scale (S)	4-7	2-6	2-7	2-6	2-7	n/a	4-6
Vertex Conf. Jet (S)	4 - 10	5 - 12	4 - 10	7 - 10	5 - 10	n/a	4-6
b-tag/taggability (S)	3-7	4-6	3 - 10	5 - 10	4 - 10	n/a	4 - 9
Heavy-Flavor K-factor	n/a	20	n/a	n/a	n/a	n/a	n/a
InstWH $e\nu b\bar{b}$ (S)	1-2	2-4	1-3	1-2	1 - 3	15	1-2
InstWH $\mu\nu b\bar{b}$	n/a	2.4	2.4	n/a	n/a	20	n/a
Cross Section	6	9	9	10	10	n/a	6.1
Signal Branching Fraction							1-9
ALPGEN MLM pos/neg(S)	n/a	SH	n/a	n/a	n/a	n/a	n/a
ALPGEN Scale (S)	n/a	SH	ŚН	n/a	n/a	n/a	n/a
Underlying Event (S)	n/a	SH	n/a	n/a	n/a	n/a	n/a
PDF, reweighting	2	2	2	2	2	n/a	$\overset{\prime}{2}$


Double Tag (DT) $WH \rightarrow \ell \nu b \bar{b}$ channel relative uncertainties (%)

Contribution	Diboson	$Z/\gamma^* \to \ell \ell$	$W + jet/\gamma$	$t\bar{t}$	Multijet	$gg \to H$	$qq \to qqH$	VH
Luminosity/Normalization	6	6	6	6	30	6	6	6
Cross Section (Scale/PDF)	7-8	5	6	10	n/a	13 - 33 / 7.6 - 30	4.9	6.1
Signal Branching Fraction	Ν	n/a	n/a	n/a	n/a	0-7.3	0-7.3	0-7.3
PDF	2.5	2.5	2.5	2.5	n/a	8-30		
EM Identification	2.5	2.5	2.5	2.5	n/a	2.5		
Muon Identification	4	4	4	4	n/a	4		
Vertex Confirmation (s)	2-6	1-7	1-6	1-8	n/a	1-8		
Jet identification (s)	2-5	2-5	2-5	2-5	n/a	2-5		
Jet Energy Scale (s)	2-3	1-4	1-8	1-4	n/a	1-10		
Jet Energy Resolution(s)	1-4	1-4	1-12	1-3	n/a	1-12		
B-tagging	10	10	10	5	n/a	10		

 $H \to W^+ W^- \to \ell^\pm \ell^\mp$ channels relative uncertainties (%)

 $\frac{H \rightarrow W^+ W^- \rightarrow \ell^{\pm} \nu \ell^{\mp} \nu}{\times}$ $ZH \rightarrow \ell \ell b \bar{b}$ Source $WH \rightarrow \ell \nu b\bar{b}$ $ZH \rightarrow \nu \bar{\nu} b\bar{b}$ Luminosity × \times Х Normalization Jet Energy Scale Х × \times \times Jet ID \times \times \times \times Tau Energy Scale/ID Electron ID/Trigger \times \times \times \times Muon ID/Trigger \times \times \times × Photon ID/Trigger b-Jet Tagging \times \times \times Background σ × × \times х Background Modeling Multijet Signal σ \times Signal modeling \times $\frac{H + X \to \mu^{\pm} \tau_{had}^{\mp} + \leq 1j \quad H + X \to \ell^{\pm} \tau_{had}^{\mp} jj \quad H \to W^{+} W^{-} \to \ell \nu jj}{\times}$ $VH \rightarrow \ell^{\pm}\ell^{\pm} + X$ Source $H \rightarrow \gamma \gamma$ Luminosity \times Normalization Jet Energy Scale \times × \times × Jet ID × × \times × Tau Energy Scale/ID \times × Electron ID/Trigger \times \times \times \times Muon ID/Trigger \times × × \times Photon ID/Trigger Х b-Jet Tagging Background σ \times X Х Х Background Modeling Multijet Signal σ Х \times Х х х Signal modeling × х \times \times ×


TABLE XII: The correlation matrix for the analysis channels. All uncertainties within a group are considered 100% correlated across channels. The correlated systematic uncertainty on the background cross section (σ) is itself subdivided according to the different background processes in each analysis.

High mass final states with taus

Exclusive analysis according to the number of reconstructed jets

- ℓ + T + 0, 1 jet (ℓ = μ only) mainly sensitive to H \rightarrow WW \rightarrow ℓ vTV
- $\tau \ell + \tau + \ge 2$ jets allows to benefit from $\Rightarrow H \rightarrow \tau \tau$ decay at low mass \Rightarrow several production modes providing a flat sensitivty over the whole range mass

Tabulated limits

 m_H 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 Expected: 1.43 1.54 1.71 1.90 2.02 2.15 2.14 1.98 1.79 1.63 1.42 1.22 0.92 0.87 1.01 1.18 1.42 1.79 2.17 2.55 2.95 Observed: 0.88 1.09 1.45 2.05 2.14 3.29 3.32 2.51 2.71 2.94 2.06 1.85 1.13 0.71 1.00 1.56 1.69 2.13 2.49 3.49 3.61