

Bill Murray
Bill.Murray@stfc.ac.uk
On behalf of the
ATLAS and CMS collaborations

Euro. Phys. Soc. Grenoble 27th July 2011

What is LHC sensitive to?

•Are there any hints?

First: thanks to LHC people!

ATLAS and CMS asked for 1fb⁻¹ for this meeting

- Steve and all his friends delivered and more
- Most of it in June
- We have only started digesting this rich meal

- SUSY Higgs searches
 - 5 Higgs bosons to look for...
 - $H^+ \rightarrow TU$
 - H⁺ → CS
 - A/H → TT
- Standard Model searches
 - Low mass (110-130 GeV)
 - Moderate mass (130-200 GeV)
 - High mass (200Gev+)
 - Combination

MSSM: Multiple Higgses

Peter visiting LHC, CMS and ATLAS

Charged Higgs to TV

- CMS search for top to H^+b , H^+ to $\tau\nu$ for $1fb^{-1}$
- Background is mostly t→W+b

- No evidence so far
- Limits BR(t-H+b) ~4%
 - Far surpassing previous results

ırrav STFC/RAL

5

Charged Higgs to cs

FC/RAL

- ATLAS searched for top to H⁺b, H⁺ to quarks
- Background is mostly t → W+b

- No sign was seen in 2010
- Limits ~20% level; similar to Tevatron results

STFC/RAL

- Φ → ττ 2011 CMS
- eμ, μτ_h, eτ_h
- Inclusive, b-tag, VBF
- Very nice results

- Exclusion of very large area
 - Note H⁺ limit added

7

The guaranteed discovery?

EPS 2011 Grenoble

Experimental situation

- Electroweak data compatible with the Standard Model
 - m_w is a triumph!
 - Prefers m_H<Tevatron range
- But...it assumes SM is whole story
 - This is not well justifed
 - We know SM is incomplete
 - Gravity? Dark matter? ...
 - Take this with a pinch of salt
- ATLAS & CMS search over a wide range...

Tevatron results

Tevatron Run II Preliminary, L ≤ 8.6 fb⁻¹

LHC Higgs production

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

 Higgs crosssections for gluon fusion

— LHC

---- TeVatron

 Gluon fusion at least 10x higher cross-section

- Backgrounds to WW,ZZ,γγ are qq annihilation
 - s/b better in these channels than Tevatron
 - But it is worse in associated modes

Higgs cross-sections

- \bullet H \rightarrow ZZ
 - ZZ → IIII: Golden mode
 - ZZ → IIνν: Good High mass
 - ZZ → Ilbb: Also high-mass
- H → WW
 - WW → IvIv: Most sensitive
 - WW → lvqq: highest rate
- H → yy
 - Rare, best for low mass
- H → ττ
 - Good s/b, low mass,rare
- H → bb
 - ttH, WH, ZH useful but hard

H decay mode	ATLAS	CMS	Tevatron
ττ		Inclusive+VBF	H/VH/VBF
bb	lυΗ, ΙΙΗ		lυΗ, ΙΙΗ, υυΗ
ΥΥ	Inclusive	Inclusive	Inclusive
WW → IVIV	0jet, 1 jet m<240	0jet, 1jet, VBF	0j / 1j / 2j / 1l
WW → lvqq	0jet, 1jet		0jet, 1jet
ZZ → IIII	Inclusive	Inclusive	
ZZ → IIvv	Jet veto	b jet veto	
ZZ → IIbb	Inclusive	Inclusive	

Channels reviewed (ATLAS)

EPS 2011 Grenoble

Channels reviewed

Low mass searches

EPS 2011 Grenoble

VH, H→bb

- H → bb is dominant decay mode for light Higgs
 - But very hard to do due to huge bb backgrounds
 - ATLAS tried WH and ZH modes inclusively:

Note signal increased by factor 20

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-103/

EPS 2011 Grenoble

W.Murray STFC/RAL

17

- Top and Wjj/Wbb backgrounds fitted to data
 - Shapes from simulation
- Sensitivity is ~ 15xSM

- Subjet analysis should help
 - W+'fatjet' studies suggest W to qq from tt → WbWb seen
 - Ready to search for H to bb

results

H → TT

- CMS showed 2011 SM
- Including VBF search
 - With a beautiful picture
 - μ-τ candidate
 - Two forward jets
 - Mass 580GeV
 - Little central activity
 - Looks just as advertised
- e-μ, μ-μ, μ-τ, e-τ
 channels studied
- Details are here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig11009TWiki

CMS Experiment at LHC, CERN Data recorded: Fri May 20 01:10:36 2011 CEST

Run/Event: 165364 / 356120525

Lumi section: 285

H → TT results

- Limits around 9xSM
 - At 115-125 (where we need this most)

- e-µ VBF channel (left) is cleanest
 - Mass calculation can improve

EPS 2011 Grenoble

W.Murray STFO

H - y y

- Rare decay
- 110<m_H<150
- Tough ECAL requirements
 - Mass resolution tested in Z → ee
 - Need vertex position too
 - Pileup!
- Good jet rejection also essential

Run Number: 180164, Event Number: 146351094 Date: 2011-04-24 01:43:39 CEST

- Photon
 resolution
 verified
 using the Z
 peak
- Different
 e/γ
 response in
 MC largest
 systematic
 uncertainty

Higgs mass resolution

- No good calibration in data
 - Until we find Higgs!
 - Has to be simulated
- ATLAS (black) and CMS (blue) compared

- Invariant mass spectra similar
 - Real yy events dominant for both experiments
- Fit to this spectrum, looking for sharp peak
 - Both divide events into quality categories

EPS 2011 Grenoble

H → yy limits

- ATLAS (left) and CMS (right) results similar
- Expected limits 3-4 x SM strength
 - Observed fluctuates down to 2...
 - Closing in even here, the hardest place for LHC

Intermediate searches

EPS 2011 Grenoble

WW → IVIV

- The most sensitive channel for 130<m_H<200
 - Here is where the excess comes
 - But poor mass information due to neutrinos
- Good trigger, reasonable rate
 - Largest background is non-resonant WW
 - Also top when looking at WW+1 jet
 - Backgrounds measured from control regions
- Request two leptons
 - 15-25 GeV (ATLAS) 10-25GeV (CMS)
- Require missing E_{τ} (E_{t}^{rel}) and p_{τ} (II) for WW
- Select signal area with $\Delta \phi$ and $m_{_{\parallel}}$ selections
 - CMS using cut-based and multivariate
- ATLAS prefers cut-based at this stage.

 EPS 2011 Grenoble W.Murray STFC/RAL

27

WW → IVIV

- Missing E_T
 - Vital tool against Z+jets events
 - costs in signal rate
 - Rate of backgrounds here measured in data

m, in WW → IVIV

- Top: CMS
 - p_T , m_{\parallel} , $\Delta \Phi_{\parallel}$, m_T uncut
- Bottom:ATLAS
 - m_{\parallel} , $\Delta \Phi_{\parallel}$, m_{\top} uncut
- Excess?
 - ATLAS and CMS
 - 1-jet largest?

ATLAS WW → IVIV

- Final m_T for ATLAS events
 - A window here 25% m_µ wide selects final events
 - Some tendency for events to be same flavour

EPS 2011 Grenoble

 $L = 1.1 \text{ fb}^{-1}$

CMS preliminary

0 jet

0.5

MVA Output

CMS WW → IVIV

Final analysis plots:

Boosted decision trees

40

20

Top Ojet, bottom 1-jet

Left: eµ

Right: ee/µµ

Windows here select candidates

0

-0.5

W+iets

- ATLAS (left) exclude m_H 158-186 (exp: 142-186)
- CMS (right) exclude: m_H 150-193 (exp: 130-200)

EPS 2011 Grenoble

WW → IVIV

Focus on same region:

- ATLAS (left) exclude m_H 158-186 (exp: 142-186)
- CMS (right) exclude: m_H 150-193 (exp: 130-200)

EPS 2011 Grenoble

WW → IVIV

- CMS and ATLAS have excess 110-160GeV
 - Compatible with signal 120<m_H<150
 - Best match at about 140

EPS 2011 Grenoble

High mass searches

- Largest Higgs BR for high mass
- Presence of charged lepton gives good QCD rejection
- But, like in tt, semileptonic mode allows mass reconstruction

- Suffers from LARGE background from W+jets
 - But smooth background
 - Signal is a bump
 - Analysis is relatively straightforward

WW → Ivqq

- M_{ιυαα} raw (left) and background-subtracted (right)
 - Sum over the 0 and 1 extra jet searches

- Sensitive to five to ten times SM cross-section
- Limits 'lucky' around 400GeV
 - Exclude 2xSM
- No excess anywhere

- Clean decay,
 - All leptonic
- Higher rate than IIII
 - Z → vv seen through missing energy
 - Only if Z moves
- m_H>200GeV
- Needs good MET
 - CMS excellent description of Zs

ZZ → IIvv

- ATLAS (left) and CMS (right)
- Harder E_{τ}^{miss} and $\delta \phi$ cuts at high mass
- 380GeV is excluded by left figure alone!

- ATLAS (left) and CMS (right)
- ATLAS excludes 360 to 440 GeV just!
- Both searches best sensitivity 1-2xSM
 - Both got lucky

- Highest rate for a ZZ process
 - Good for Higgs boson mass over 200GeV
- Use 2/3 subchannels:
 - Z to light quarks (inclusively)
 - CMS use quark/gluon tagging to enhance signal
 - Z to b quarks
- CMS use decay angles explicitly

llqq

- CMS sensitivity 2xSM, ATLAS 3xSM at 350-400
- Fluctuations never up to 2σ

- Require 4 identified leptons
 - Backgrounds already rather low
- At least one pair compatible with Z peak
 - For m_□ < 180GeV one will be off-shell
 - At higher masses require both compatible.
- Background from:
 - Zbb can produce two leptons from the b decay
 - tt → lvblvb can give the same issue
- So suppress:
 - b quarks with impact parameters cuts
 - Fakes with isolation
- Background largely genuine ZZ^(*)

ZZ(*) → ||||

- Both experiments collect a few too many events
- ATLAS near 245, CMS below 180

- CMS (just) excludes SM at 195; ATLAS not there
- Small excess visible near 140

ATLAS / CMS combinations

- The SM Higgs is a very well-defined thing
 - Tell us the mass and we know the rest
- So we know what to expect in all these channels
 - We put them together for optimal sensitivity.

.

- Needs precise understanding of the theory
 - · LHC cross-section working group did a great job
 - We have an agreed set of rates to work with
- So what do the combinations look like?

CMS channels compared

ATLAS & CMS limits

Sensitivities differ in detail But on average similar

I personally conclude 155-206 & 270-450 GeV

CMS and ATLAS

 $\sigma/\sigma_{_{\mathrm{SM}}}$

- Nearly half the plot excluded already!
- Hints of excesses in all 3 free regions
- Interesting times!

EPS 2011 Grenoble

95% CL Limit/SM

Tevatron Run II Preliminary, L ≤ 8.6 fb⁻¹

100 110 120 130 140 150 160 170 180 190 200 m_H(GeV/c²)

E

- Fraction of time background fluctuates so far
 - Beware: there is a look 'elsewhere effect'
- Both experiments have excess at low mass

P-values compared

Look-elsewhere effect important

High-mass excesses not corroborated

P-values at low mass

Some correlated uncertainties

Look-elsewhere effect important

- The combination of results is complex
 - Fits with over 100 parameters are running
 - But are not ready for this meeting
 - Beware. There is NONSENSE even on CERN WWW pages
- The limits have large common systematic errors
 - Especially on signal cross-section
- The WW analyses driving excess have similar modeling in both groups
- LHC-HCG will provide update as soon as possible

Where do we go from here?

- More data!
 - The universal cry
 - It is coming fast
 - A month might double dataset?
- Better analysis
 - Many possible improvements
 - Unlikely to be conclusive

- LHC combination
 - Will allow to test compatibility of datasets
 - Many possibilities will be excluded soon

60

Summary

- With 1fb⁻¹ the LHC dominates the SM Higgs
- We exclude
 - 155-190GeV and 295-450GeV (ATLAS)
 - 149-206GeV and 300-440GeV (CMS)
 - 155-206GeV and 295-450 GeV (Very Safe)
 - LHC combination will exclude much more
- Interesting hints emerge
 - e.g. 144GeV $\sim 2.9\sigma$ in both experiments
 - Minutes of LEPC 56th meeting (3rd Nov. 2000):

`The committee noted that there is unfortunately no single channel that is background-free.'

H → yy: Any excess?

- ATLAS (left) and CMS (right) results similar
- Small excess at 119, 128 and 138.
 - But they contradict each other
 - Entirely normal background fluctuations

Missing E₊ reconstruction

Z plus jets shows well-controlled E_T miss

EPS 2011 Grenoble

Event rates numerically

Event Rates

		Nominal		$\mu = 0$		$\mu = 1$		
m_H (GeV)	Lepton Flavors	Signal	Total Bkg.	Signal	Total Bkg.	Signal	Total Bkg.	Observed
150 H+0j	ee	3.1	4.7	0	5.7	3.1	4.4	7
	$e\mu$	10.6	17.2	0	20.8	10.4	15.7	21
	$\mu\mu$	6.8	10.9	0	13.4	6.7	10.1	21
150 H+1j	ee	0.94	2.2	0	2.3	1.05	1.98	4
	$e\mu$	4.0	9.0	0	8.8	4.4	7.0	8
	$\mu\mu$	2.3	4.0	0	4.2	2.5	3.0	9
180 H+0j	ee	4.2	6.3	0	6.8	4.0	4.5	3
	$e\mu$	11.8	19.1	0	20.9	11.3	12.7	25
	$\mu\mu$	7.8	13.5	0	14.7	7.4	9.6	16
180 H+1j	ee	1.60	4.9	0	4.9	1.44	4.4	5
	$e\mu$	5.5	14.6	0	12.3	4.9	10.1	8
	$\mu\mu$	3.4	6.5	0	6.4	3.1	4.5	12

EPS 2011 Grenoble

- 8TeV: Need only 80% as much data
 - Less for a high mass Higgs boson
- 9TeV 60% of data suffices

EPS 2011 Grenoble

Sensitivity of Higgs search

5fb⁻¹ at 8TeV gives 3σ for 114 to >500GeV

EPS 2011 Grenoble

EPS 2011 Grenoble

Effect of raising E_{CMS}

- 8TeV: 10% to factor 4 increases
 - Doubled for 9TeV
 - Higgs increased by 30%

EPS 2011 Grenoble

- SU(3) X SU(2) X U(1)
- This gauge symmetry predicts γ,W,Z,gluons
 - Requires them to be massless
- Symmetry breaking is needed for masses

Why do we need the Higgs?

families, with leptons

$$egin{pmatrix} v_L \ e_L \ and quarks \ u_L \ d_L \ \end{pmatrix}, v_R, e_R$$

Gauge Symmetries

SU(2)_L:
$$\psi_L(x) \rightarrow \exp \left[i \frac{g}{2} \vec{\sigma} \cdot \vec{\theta}(x) \right] \psi_L(x)$$

SU(3)_c:
$$\psi_q(x) \rightarrow \exp\left[i\frac{g_s}{2}\lambda_a\theta^a(x)\right]\psi_q(x)$$

Bosons, Interactions

γ: QED

Z, W: Weak

 $\tan \vartheta_W = \frac{g'}{g}$

gluons: QCD

A mass term couples L & R and would violate SU(2)_L

Solution: The Higgs mechanism

Thanks: P. Janot

What is Higgs' mechanism?

- •Doublet of $SU(2)_L$, $\Phi = (\Phi_1, \Phi_2)$
- •Potential respects SU(2)_L
 But Vacuum does not!

Fermions:

Interact with Higgs field slows them down → generates mass

Bosons:

SU(2)_L interact, gain mass

 $U(1)_{\gamma}$ and $SU(3)_{c}$ do not, massless

3 degrees of freedom in Boson masses 4th becomes fundamental scalar