

Jet Production at HERA and Determination of α_s with H1

Artem Baghdasaryan DESY / YerPhl

EPS, Grenoble 2011

Jet Production

Born Level

QCD Compton

Boson Gluon Fusion

 $\xi = x_{Bi}(1 + M_{12}^2/Q^2)$ - momentum fraction of struck parton (in LO)

Breit frame (2xP + q = 0) is ideal for studying QCD with large P_{T} .

In Breit frame processes
with low P_T (Born level
contribution, jet contribution
from proton remnant, etc)
are suppressed

Jet Measurement at H1

Neutral Current Pha	se Space
----------------------------	----------

	High Q ² (full HERA2, L=351.6/ pb)
$5 < Q^2 < 100 \text{ GeV}^2$	150 < Q ² < 15 000 GeV ²

Jet Finder: longitudinally invariant infrared &collinear safe k_T algorithm with merging parameter R_0 = 1 and jet minimal transvers momentum in Breit frame P_{TBreit} = 5 GeV

Jet Phase Space

$$5 < P_{TBreit} < 80 \text{ GeV}$$
 $5 < P_{TBreit} < 50 \text{ GeV}$

$$-1.0 < \eta_{(lab)} < 2.5$$

For avoiding problem with singularities additional cut implied on 2- & 3-jet level:

$$M_{12} > 18 \text{ GeV (Low Q}^2)$$

$$M_{12} > 16 \text{ GeV (High Q}^2)$$

Notation:

Q² – exchanged boson virtuality

y - inelasticity

 $\eta_{(lab)}$ - jet pseudorapidity (laboratory frame)

M₁₂ – invariant mass of two leading jets

NLO Calculations

- NLOJet++ with MSbar scheme for five massless quark flavors
- PDF: CTEQ6.5M (low Q²) and HERAPDF1.5 (high Q²) with $\alpha_S(M_z) = 0.118$
- NLO corrected for hadronization and Z₀ exchange effects
 - The hadronization correction factor differ from unity
 - less the 10% for inclusive and dijet cross sections
 - less then 20% for trijet and trijet to dijet cross sections ratio
- Scales: $\mu_f^2 = \mu_r^2 = (Q^2 + P_T^2)/2$
- Theoretical uncertainties $\Delta\mu_f$ and $\Delta\mu_r$ estimated by variation of μ_f and μ_r by a factor 2
- Total scale uncertainty = $\sqrt{(\Delta \mu_f^2 + \Delta \mu_r^2)}$

2-Jet Cross Section

Cross Sections as function of Q² and ξ (Low Q²)

First double differential cross section measurements
Eur.Phys.J. C67 (2010) 1

Experimental uncertainties (<~10%) dominate by HFS and model uncertainties and are essentially smaller then theoretical ones.

Theoretical uncertainties (up to 30%) dominated by renormalization scale.

Trijet Double Differential Cross Sections (Low Q²)

The 3-jet cross section in four Q^2 bins as a function of P_T . The NLO QCD calculation provides an overall good description of the measured distributions within the quoted theoretical and experimental uncertainties.

Trijet/Dijet Cross Sections Ratio (Low Q²)

The 3-jet cross section normalised to the 2-jet cross section is presented for single differential (on the left)

and for double differential distributions (below).

3-Jet to 2-Jet Ratio

This observable benefits from cancellation of the normalisation uncertainties and reduction of the other systematic uncertainties by about 50%.

It is described by the NLO cross section except for the lowest P_T bin, and shows a reduced sensitivity to the renormalisation scale variation which is done simultaneously for 2-jet and 3-jet cross sections.

Double differential Inclusive Jet Cross Sections (High Q²)

Jet energy scale uncertainty ~ 1%

Experimental uncertainty of 4-8% about half of the theoretical one.

Data are well described by NLO.

21.07.11

Double differential Trijet Cross Section (High Q²)

First double differential trijet cross section measurements at high Q².

Experimental uncertainties dominated by model and HFS uncertainties.

Data are well described by NLO.

$\alpha_s(M_z)$ Measurements

Extracted $\alpha_s(M_z)$ with correlated and uncorrelated errors taken into account

Inclusive+ Dijet + Trijet without points with k = σ_{NLO}/σ_{LO} > 2.5): Eur.Phys.J. C67 (2010) 1

$$\alpha_s(M_Z) = 0.1160 \pm 0.0014 \text{(exp.)} \pm 0.0016 \text{(pdf)} ^{+0.0093}_{-0.0077} \text{(th.)}$$

H1 preliminary 11-032

Inclusive jet:

$$\alpha_s(M_Z) = 0.1190 \pm 0.0021 \text{ (exp.)} \pm 0.0020 \text{ (pdf)} ^{+0.0050}_{-0.0056} \text{ (th.)}$$

Dijet:

$$\alpha_s(M_Z) = 0.1146 \pm 0.0022 \text{ (exp.)} \pm 0.0021 \text{ (pdf)} ^{+0.0044}_{-0.0045} \text{ (th.)}$$

Trijet:

$$\alpha_s(M_Z) = 0.1196 \pm 0.0016 \text{ (exp.)} \pm 0.0010 \text{ (pdf)} ^{+0.0055}_{-0.0039} \text{ (th.)}$$

Main uncertainties come from theory uncertainties (~4-8%) -> theory improvement is desirable

Running of $\alpha_s(\mu_r)$

Theoretical and experimental uncertainties for high $Q^2 \alpha_s$ (Eur.Phys.J.C65(2010)363) extrapolated down to low Q^2 .

Remarkable agreement between extraction of $\alpha_s(\mu_r)$ at low and high Q².

Nice running of strong coupling between 6 – 70 GeV in single experiment.

Summary

High precision measurement of inclusive, dijet, trijet cross sections at low and high Q² as well as 3J to 2J cross sections ratio for low Q² presented.

All measurements are in good agreement with NLO.

To reduce large theoretical uncertainties calculation of terms beyond NLO necessary.

 $\alpha_s(M_Z)$ from jet measurements at HERA are in good agreement between each other and with world average.

BACKUP

-14 - Double differential Dijet Cross Sections Low Q²

- 15 -Single differential **Jet Cross Sections** (High Q2)

dσ_{dije}/dΩ² [pb GeV²] 0, 0, 0, 0,

104 1.2 Dijet

H1 Preliminary

10³

H1 Preliminary

10³

Inclusive Jet

Dijet

10²

H1 Data (prel.)

-16 - Double differential Dijet Cross Section (High Q2)

Double Differential - 17 -**Trijet Cross Sections**

Trijet Cross Section

$\alpha_{\rm S}(M_{\rm Z})$ Fit

Exp. uncertainty of fit defined as α_s interval upto minimum χ^2+1