Jet Production at HERA and Determination of $\alpha_s$ with H1

Artem Baghdasaryan  
DESY / YerPhI

EPS, Grenoble 2011
Jet Production

\[ \xi = x_{Bj}(1 + M^2_{12}/Q^2) \] - momentum fraction of struck parton (in LO)

Breit frame (2xP + q = 0) is ideal for studying QCD with large P_T.

In Breit frame processes with low P_T (Born level contribution, jet contribution from proton remnant, etc) are suppressed
Jet Measurement at H1

## Neutral Current Phase Space

<table>
<thead>
<tr>
<th>Low $Q^2$ (HERA1 (99-00), $L=43.6/\text{pb}$)</th>
<th>High $Q^2$ (full HERA2, $L=351.6/\text{pb}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5 &lt; Q^2 &lt; 100 \text{ GeV}^2$</td>
<td>$150 &lt; Q^2 &lt; 15000 \text{ GeV}^2$</td>
</tr>
<tr>
<td>$0.2 &lt; y &lt; 0.7$</td>
<td></td>
</tr>
</tbody>
</table>

Jet Finder: longitudinally invariant infrared & collinear safe $k_T$ algorithm with merging parameter $R_0 = 1$ and jet minimal transvers momentum in Breit frame $P_{TBreit} = 5 \text{ GeV}$

## Jet Phase Space

<table>
<thead>
<tr>
<th>$5 &lt; P_{TBreit} &lt; 80 \text{ GeV}$</th>
<th>$5 &lt; P_{TBreit} &lt; 50 \text{ GeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-1.0 &lt; \eta_{(lab)} &lt; 2.5$</td>
<td></td>
</tr>
</tbody>
</table>

For avoiding problem with singularities additional cut implied on 2- & 3-jet level:

- $M_{12} > 18 \text{ GeV}$ (Low $Q^2$)
- $M_{12} > 16 \text{ GeV}$ (High $Q^2$)

**Notation:**

- $Q^2$ – exchanged boson virtuality
- $y$ – inelasticity
- $\eta_{(lab)}$ – jet pseudorapidity (laboratory frame)
- $M_{12}$ – invariant mass of two leading jets
NLO Calculations

- NLOJet++ with MSbar scheme for five massless quark flavors
- PDF: CTEQ6.5M (low $Q^2$) and HERAPDF1.5 (high $Q^2$) with $\alpha_s(M_Z) = 0.118$
- NLO corrected for hadronization and $Z_0$ exchange effects
  - The hadronization correction factor differ from unity
    - less the 10% for inclusive and dijet cross sections
    - less then 20% for trijet and trijet to dijet cross sections ratio
- Scales: $\mu_f^2 = \mu_r^2 = (Q^2 + P_T^2)/2$
- Theoretical uncertainties $\Delta \mu_f$ and $\Delta \mu_r$ estimated by variation of $\mu_f$ and $\mu_r$ by a factor 2
- Total scale uncertainty $= \sqrt{(\Delta \mu_f^2 + \Delta \mu_r^2)}$
Cross Sections as function of $Q^2$ and $\xi$ (Low $Q^2$)

First double differential cross section measurements

Experimental uncertainties ($<\sim 10\%$) dominate by HFS and model uncertainties and are essentially smaller than theoretical ones.

Theoretical uncertainties (up to $30\%$) dominated by renormalization scale.
Trijet Double Differential Cross Sections (Low $Q^2$)

The 3-jet cross section in four $Q^2$ bins as a function of $P_T$. The NLO QCD calculation provides an overall good description of the measured distributions within the quoted theoretical and experimental uncertainties.
The 3-jet cross section normalised to the 2-jet cross section is presented for single differential (on the left) and for double differential distributions (below).

This observable benefits from cancellation of the normalisation uncertainties and reduction of the other systematic uncertainties by about 50%.

It is described by the NLO cross section except for the lowest $P_T$ bin, and shows a reduced sensitivity to the renormalisation scale variation which is done simultaneously for 2-jet and 3-jet cross sections.
Double differential Inclusive Jet Cross Sections (High $Q^2$)

Jet energy scale uncertainty ~ 1%

Experimental uncertainty of 4-8% about half of the theoretical one.

Data are well described by NLO.

21.07.11
Double differential Trijet Cross Section (High $Q^2$)

First double differential trijet cross section measurements at high $Q^2$.

Experimental uncertainties dominated by model and HFS uncertainties.

Data are well described by NLO.

21.07.11
\( \alpha_s(M_Z) \) Measurements

Extracted \( \alpha_s(M_Z) \) with correlated and uncorrelated errors taken into account.

Inclusive + Dijet + Trijet without points with \( k = \sigma_{NLO}/\sigma_{LO} > 2.5 \):


\[
\alpha_s(M_Z) = 0.1160 \pm 0.0014 \text{(exp.)} \pm 0.0016 \text{(pdf)} ^{+0.0093}_{-0.0077} \text{(th.)}
\]

**H1 preliminary 11-032**

**Inclusive jet:**

\[
\alpha_s(M_Z) = 0.1190 \pm 0.0021 \text{ (exp.)} \pm 0.0020 \text{ (pdf)} ^{+0.0050}_{-0.0056} \text{ (th.)}
\]

**Dijet:**

\[
\alpha_s(M_Z) = 0.1146 \pm 0.0022 \text{ (exp.)} \pm 0.0021 \text{ (pdf)} ^{+0.0044}_{-0.0045} \text{ (th.)}
\]

**Trijet:**

\[
\alpha_s(M_Z) = 0.1196 \pm 0.0016 \text{ (exp.)} \pm 0.0010 \text{ (pdf)} ^{+0.0055}_{-0.0039} \text{ (th.)}
\]

Main uncertainties come from theory uncertainties (~4-8%)

\[ \rightarrow \text{theory improvement is desirable} \]
Running of $\alpha_s(\mu_r)$


Remarkable agreement between extraction of $\alpha_s(\mu_r)$ at low and high $Q^2$.

Nice running of strong coupling between 6 – 70 GeV in single experiment.
Summary

High precision measurement of inclusive, dijet, trijet cross sections at low and high $Q^2$ as well as $3J$ to $2J$ cross sections ratio for low $Q^2$ presented.

All measurements are in good agreement with NLO.

To reduce large theoretical uncertainties calculation of terms beyond NLO necessary.

$\alpha_s(M_Z)$ from jet measurements at HERA are in good agreement between each other and with world average.
BACKUP
Double differential Dijet Cross Sections Low $Q^2$
Single differential Jet Cross Sections (High Q2)
Double differential Dijet Cross Section (High Q²)
Double Differential Trijet Cross Sections

H1 Preliminary

Data / MC

Calibration Sample

- Data
- Djangoh
- Rapgap

Output

\( \frac{P^2}{P_T^2} \)

Trijet Cross Section

- 150 < \(Q^2\) < 200 GeV\(^2\)
- H1 Data (prel.)
- NLO \(c, Z^2\)
- HERAPDF 1.5

- 200 < \(Q^2\) < 270 GeV\(^2\)

- 270 < \(Q^2\) < 400 GeV\(^2\)

- 400 < \(Q^2\) < 700 GeV\(^2\)

- 700 < \(Q^2\) < 5000 GeV\(^2\)

- 5000 < \(Q^2\) < 15000 GeV\(^2\)
Minimise $\chi^2(\alpha_s(M_Z))$ defined as:

$$
\chi^2 = \mathbf{V}^T \cdot M^{-1} \cdot \mathbf{V} + \sum_k \mathbf{\varepsilon}_k^2
$$

**correlated version of $\sum$(difference/error)$^2$**

$$
M = M_{\text{stat.}} + M_{\text{uncor.}}
$$

**penalty term for fitted systematics**

**“Hessian” method**

$$
\mathbf{V}_i = \sigma_i^{\text{exp.}} - \sigma_i^{\text{theo.}} \left( 1 - \sum_k \Delta_{ik} \mathbf{\varepsilon}_k \right)
$$

**correlated for some bins**

**uncorrelated systematics**

**correlated systematical error #k**

**parameter in fit, pull**

**“Hessian” method**

Exp. uncertainty of fit defined as $\alpha_s$ interval upto minimum $\chi^2 + 1$