Charged Lepton Flavour & Dipole Moments T. Mori The University of Tokyo

EPS-HEP 2011 Grenoble

This talk reviews the experiments which study:
charged lepton flavour violation (CLFV)
electric dipole moments (EDM)

CLFV & EDM

definite evidence of new physics

The SM effects are very tiny!!

CLFV & EDM

• Experiments to search for new physics

- TeV scale new physics (and beyond) = sources of CLFV and EDM
- competitive & complementary to LHC

We might be already seeing them...
some B asymmetry variables
muon's anomalous magnetic moment

G.Isidori et al. PRD75, 115019

Topics

- electron EDM new development
- neutron EDM coming soon
- muon EDM new idea

• CLFV

- tau decays B factories finishing up
- muon decays <u>new MEG result</u>

Origin of the EDMs

Pospelov Ritz, Ann Phys 318 (05) 119

Technique to measure EDM

• precesses with Larmor freq

$$\omega_B = -\frac{\mathbf{2}\mu_B B}{\hbar}$$

• additional precession

$$\omega_E = \frac{2d_E E}{\hbar}$$

• flip E and measure the difference

$$\omega_{E\parallel B} - \omega_{Eanti-\parallel B} \equiv \Delta \omega = \frac{\mathbf{4}d_{E}E}{\hbar}$$

Origin of the EDMs

EDM of dipolar molecules YbF

- Easier to polarize molecules than atoms
- Enhances effective E field seen by the unpaired electron by a factor up to 10⁵
- Look for interferometer phase shift of the two spin states (hyperfine levels of the ground state) when E reversed
- "Schiff shielding" strongly violated by relativistic effects

 $|d_e| < 10.5 \times 10^{-28} ecm$ 90% C.L.

- a pioneering work of the new method, though a modest 1.5× improvement over the previous Tl experiment
 - still statistically limited
- ×10 improvement within a few years;
 ×100 expected eventually
 - several groups working

Origin of the EDMs

Present limits < 2.9×10⁻²⁶ecm

C.A.Baker et al, PRL 97 (2006) 131801

Summary of active nEDM projects

Group	# people	Anticipated sensitivity (ecm)	Ву
nEDM@PSI n2EDM	~50	~5E-27 ~5E-28	2013 2016
CryoEDM@ILL	~25	~3E-27	2016
nEDM@SNS	~90	~3E-28	~2020
nEDM@RCNP @TRIUMF	~35	~1E-26 ~1E-27 ~1E-28	2014 2017 >2020
PNPI@ILL	~10-20	~1E-26	2012

ETH

Klaus Kirch Bad Honnef,

 $d_n \approx 10^{-23} e \text{ cm} \left(\frac{300 \text{ GeV/c}}{M_{SUSY}}\right)^2 \sin \phi_{SUSY}$

High Intensity Proton accelerator & UCN Source

Ultra Cold Neutron Source

UCN produced by 1.8mA, 2s pulse

Approval for full operation obtained by Swiss federal authorities end of June 2011

• Presently commissioning, expect more routine UCN production soon

Installing nEDM at PSI in 2009

Coming from ILL Sussex-RAL-ILL collaboration PRL 97 (2006) 131801

ETH

Klaus Kirch Bad Honnef, 04.07. 2011

UCN stored

First UCN stored in apparatus @ PSI: Wednesday, December 22nd, 2010

- 8s Pulse on target ①
- 40s filling
- Closing of UCN shutter
- Turning switch in emptying position ②
- Opening of shutter ③
- Emptying into detector

Obtain same figures with E=10kV/cm, T=130s, 200s cycle

After 2 years*, statistics only $d_n = 0$: $|d_n| < 4 \times 10^{-27} ecm$ (95% C.L.)

* 200 nights each

UCN production in liquid helium

 1.03 meV (11 K) neutrons downscatter by emission of phonon in liquid helium at 0.5 K

 Upscattering suppressed: Boltzmann factor e^{-E/kT} means not many 11 K phonons present
 P. Harris IoP 2011

CryoEDM at ILL

successful production/storage - need to reduce losses E field/polarization/efficiency/B stability to be improved

RAL/Sussex/Oxford/ILL/Kure

neutron EDM - Prospects

• Sensitivity is expected to improve

- by a factor of 5 in a couple of years
- by two orders of magnitude within the next decade

Origin of the EDMs

3 GeV proton beam (333 uA)

Silicon Tracker

Graphite target (20 mm)

Surface muon beam (28 MeV/c, 4x10⁸/s)

Muonium Production (300 K ~ 25 meV)

Super Precision Magnetic Field (3T, ~1ppm local precision)

Resonant Laser Ionization of Muonium (~10⁶ μ ⁺/s)

Muon LINAC (300 MeV/c)

New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam

Spin Rotation and EDM

Precession frequency vector with g-2 and EDM

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
Choose *B*, *E* and γ to cancel
g-2 rotation
ex. $p_{\mu} = 125$ MeV/c
 $B = 1$ T, $E = 0.64$ MV/m
Spin Frozen mode

$$\vec{\omega} = -\frac{e}{m} \left[\frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Spin Rotation and EDM

"Spin Frozen" method and and "E=0" method

time (nsec)

Spin Frozen case

pure EDM effect can be extracted if "frozen condition" is satisfied precisely.

$$\vec{\omega} = -\frac{e}{m} \left[\frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

E=O with spin // B case "beat" with g-2 frequency with amplitude proportional to EDM → Use g-2 rotation as systematics control

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Muon EDM Prospects

• Present limit ~ 10⁻¹⁹ ecm

• J-PARC g-2/EDM experiment could push it down to $\sim 10^{-21}$ ecm

cf. τ

 $-2.2 < Re(d_{\tau}) < 4.5 \quad (10^{-17} e \,\mathrm{cm}),$ $-2.5 < Im(d_{\tau}) < 0.8 \quad (10^{-17} e \,\mathrm{cm}).$

Belle Collaboration (K. Inami et al.). Published in Phys.Lett.B551:16-26,2003.

B-factories

Results for $\tau \rightarrow \ell hh'$

(Ge 0.2 ⊽E

In the signal region

1 event : in $\mu^+\pi^-\pi^-$ and $\mu^-\pi^+K^$ no events: in other modes \Rightarrow no significant excess

	$\begin{cases} S \\ R \\ 0.2 \end{cases} = (e) \tau^{-} \rightarrow \mu^{-} \pi^{+} K^{-}$	Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$B(10^{-8})$
	₩	$ au^- ightarrow \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	5.3	0	1.87	2.1
•	•	$ au^- ightarrow \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	5.3	1	4.02	3.9
-0.2	-0.2	$\tau^- \to e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	5.4	0	1.94	2.3
		$\tau^- \to e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	5.4	0	2.10	2.0
1.75 1.8	1.7 1.8	$\tau^- \to \mu^- K^+ K^-$	2.85	0.51 ± 0.18	5.9	0	1.97	4.4
M _{µKK} (GeV/c⁻)	M _{µπK} (GeV/c⁻)	$\tau^- \to \mu^+ K^- K^-$	2.98	0.25 ± 0.13	5.9	0	2.21	4.7
Set upper limits @90%CL:		$\tau^- \to e^- K^+ K^-$	4.29	0.17 ± 0.10	6.0	0	2.28	3.4
$Br(\tau \rightarrow \ell hh') < (2.0-8.4) \times 10^{-8}$		$\tau^- \to e^+ K^- K^-$	4.64	0.06 ± 0.06	6.0	0	2.38	3.3
(preliminary) →most sensitive results		$\tau^- \to \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	5.6	1	3.65	8.6
		$\tau^- \to e^- \pi^+ K^-$	3.97	0.18 ± 0.13	5.7	0	2.27	3.7
		$\tau^- \to \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	5.6	0	1.86	4.5
Improve our previous results by a factor of 1.8 on average		$\tau^- \to e^- K^+ \pi^-$	4.07	0.55 ± 0.31	5.7	0	1.97	3.1
		$\tau^- \to \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	5.6	0	1.93	4.8
		$\tau^- \to e^+ K^- \pi^-$	4.00	0.46 ± 0.21	5.7	0	2.02	3.2
21/July/2011 K.	Hayasaka					_		

BELLE

Results for $\tau \rightarrow \Lambda h/\Lambda h$

EPS-HEP2011@Grenoble

In the signal region

no candidate event are found ⇒ no significant excess

Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	<i>s</i> ₉₀
$\tau^- \rightarrow \bar{\Lambda} \pi^-$	4.80	0.21 ± 0.15	8.2	0	2.3
$\tau^- \to \Lambda \pi^-$	4.39	0.31 ± 0.18	8.2	0	2.2
$\tau^- \to \bar{\Lambda} K^-$	4.11	0.31 ± 0.14	8.6	0	2.2
$\tau^- \to \Lambda K^-$	3.16	0.42 ± 0.19	8.6	0	2.1

Set upper limits@90%CL: $Br(\tau \rightarrow \Lambda \pi^{-}) < 2.8 \times 10^{-8}$ $Br(\tau \rightarrow \Lambda K^{-}) < 3.1 \times 10^{-8}$ $Br(\tau \rightarrow \Lambda \pi^{-}) < 3.0 \times 10^{-8}$ $Br(\tau \rightarrow \Lambda K^{-}) < 4.2 \times 10^{-8}$ (preliminary)

→most sensitive results
 Around x(2-3) improvement
 from the previous BaBar results

K. Hayasaka

New Upper Limits on τ LFV Decay

Reach upper limits around 10⁻⁸ ~100x more sensitive than CLEO

Update using full data samples will be finalized soon! EPS-HEP2011@Grenoble

21/July/2011

K. Hayasaka, A. Adametz

LFV Sensitivity for future prospects

BelleII @SuperKEKB • Super B-factory:(10~50) ab⁻¹

LFV sensitivity

• $\tau \rightarrow i\gamma$, Sensitivity currently limited due to background from $\tau^+\tau^-\gamma$ events scale as $\sim 1/\sqrt{L} \Rightarrow Br \sim O(10^{-(8-9)})$

• τ \rightarrow 3leptons, I+meson

Negligible background at $1ab^{-1}$ due to good particle identification and mass restriction to select meson scale as ~1/L \Rightarrow Br~O(10⁻⁽⁹⁻¹⁰⁾)

Y.Miyazaki

The MEG Experiment

$\mu^+ \to e^+ \gamma$

SHOWN AT ICHEP 2010

For each plot, cut on other variables for roughly 90% window is applied.

Numbers in figures are ranking by L_{sig}/(L_{RMD}+L_{BG}). Same numbered dots in the right and the left figure are an identical event.

- New data:
 - 2010 data = 2 × 2009 data
- Better calibrations of data:
 - alignments inside/among detectors
 - applied to both 2009 & 2010 data
- Analysis methods:
 - N_{BG} constrained by side bands
 - profile likelihood intervals Feldman-Cousins

The MEG Experiment

LXe Gamma-ray Detector

COBRA SC Magnet

DC Muon Beam

Drift Chamber

~55 collaborators

Timing Counter

U.

Dominant Background Is Accidental

good γ resolution is most important !

must manage high rate e⁺

2.7t Liquid Xenon Photon Detector

- Scintillation light from 900 liter liquid xenon is detected by 846
 PMTs mounted on all surfaces and submerged in the xenon
- fast response & high light yield provide good resolutions of E, time, position
- kept at 165K by 200W pulse-tube refrigerator
- gas/liquid circulation system to purify xenon to remove contaminants

Monitor \mathbf{E}_{γ} during Run

remotely extendable beam pipe of CW proton beam (downstream of muon beam line)

17.67MeV Li peak

- sub-MeV proton beam produced by a dedicated Cockcroft-Walton accelerator (CW) are bombarded on Li₂B₄O₇ target.
- 17.67 MeV from ⁷Li
 - 2 coincident photons (4.4, 11.6) MeV from ¹¹B: synchronization of LXe and TC
- Short runs two-three times a week

Stability of E_{γ} Scale

rms ~0.3%

Absolute \mathbf{E}_{γ} Calibration

$$\pi^- p \to \pi^0 n \to \gamma \gamma n$$

- negative pions stopped in liquid hydrogen target
- Tagging the other photon at 180° provides monochromatic photons
- Dalitz decays were used to study positron-photon synchronization and time resolution: $\pi^0 \rightarrow \gamma e^+ e^-$

NaI crystal array on a movable stand to tag the other photon

55 MeV π⁰ peak 1400 CEX 1200 1000 800 600 400 200 50 52 54 56 EGamma (MeV) Number of events / (0.5MeV) side band 10³ 10² 10 RMD (+AIF) spectrum 55 50 40 45 60 Ey [MeV]

• Gamma ray energy

- Signal PDF from the CEX data
- Accidental PDF from the side bands
- Scale & resolutions verified by radiative decay spectrum
- systematic uncertainty on energy scale: 0.3%

Photon Conversion Position

Pb collimator

 Resolution for photon conversion position was evaluated by CEX run with Pb collimators

• ~ <u>5</u>mm

uniform B-field

gradient B-field

Low energy positrons quickly swept out

Constant bending radius independent of emission angles

Drift Chambers

filled with He inside COBRA

- 16 radially aligned modules, each consists of two staggered layers of wire planes
- 12.5um thick cathode foils with a Vernier pattern structure
- He:ethane = 50:50 differential pressure control to COBRA He environment

~2.0×10⁻³ X₀ along the positron trajectory

Positron Angle & Muon Decay Point

Timing Counters

fine-mesh PMTs for scintillating bars

scintillating fibers

APD

installing inside COBRA

- Scintillator arrays placed at each end of the spectrometer
- Measures the impact point of the positron to obtain precise timing

Positron - Photon Timing

- Positron time measured by TC and corrected by ToF (DC trajectory)
- LXe time corrected by ToF to the conversion point
- RMD peak in a normal physics run corrected by small energy dependence; stable < 20ps

Improved calibration & analysis

- alignmer'
 - DC a state the part of the second s
 - optica.
 - DC: MILLE
 - target holes

• LXe

more det

correlatio

 \bigcirc

Blind & Likelihood Analysis

PDFs mostly from data accidental BG: side bands signal: measured resolution radiative BG: theory + resolution

Likelihood Fit

 fully frequentist approach (Feldman & Cousins) with profile likelihood ratio ordering

$$\mathcal{L}\left(N_{\mathrm{sig}}, N_{\mathrm{RMD}}, N_{\mathrm{BG}}\right) = \frac{e^{-N_{\mathrm{obs}}}}{N!} e^{-\frac{1}{2}\frac{\left(N_{\mathrm{BG}} - \langle N_{\mathrm{BG}} \rangle\right)^{2}}{\sigma_{\mathrm{BG}}^{2}}} e^{-\frac{1}{2}\frac{\left(N_{\mathrm{RMD}} - \langle N_{\mathrm{RMD}} \rangle\right)^{2}}{\sigma_{\mathrm{RMD}}^{2}}} \times \prod_{i=1}^{N_{\mathrm{obs}}} \left(N_{\mathrm{sig}}S(\vec{x}_{i}) + N_{\mathrm{RMD}}R(\vec{x}_{i}) + N_{\mathrm{BG}}B(\vec{x}_{i})\right),$$

 $LR_p(N_{\text{sig}}) = \frac{\max_{N_{\text{BG}}, N_{\text{RMD}}} \mathcal{L}(N_{\text{sig}}, N_{\text{BG}}, N_{\text{RMD}})}{\max_{N_{\text{sig}}, N_{\text{BG}}, N_{\text{RMD}}} \mathcal{L}(N_{\text{sig}}, N_{\text{BG}}, N_{\text{RMD}})}$

Performance Summary

	2009	2010		
Gamma Energy (%) Gamma Timing (psec) Gamma Position (mm) Gamma Efficiency (%) e^+ Timing (psec) e^+ Momentum (keV) $e^+ \theta$ (mrad) $e^+ \phi$ (mrad) $e^+ \phi$ (mrad) e^+ vertex Z/Y (mm) e^+ Efficiency (%) e^+ -gamma timing (psec)	1.9 96 5 (u,v), 6 (w) 58 107 310 (80% core) 9.4 6.7 1.5 / 1.1 (core) 40 146	1.9 67 5 (u,v), 6 (w) 59 107 330 (79% core) 11.0 7.2 2.0 /1.1 (core) 34 122		
Trigger efficiency (%)	91	92		
Stopping Muon Rate (sec ⁻¹) DAQ time/ Real time (days)	2.9×10 ⁷ 35/43	2.9×10 ⁷ 56/67		
Expected 90% C.L. Upper Limit	3.3×10 ⁻¹²	2.2×10 ⁻¹²		
Timing improvement by waveform digitizer upgrade in 2011:				

The e+ tracking slightly worse due to DC noise problem in 2011

2009 data update

2009 data update

Nsig = $3.0 \longrightarrow Nsig = 3.4$

Likelihood Analysis

2010 data

Side band data analyzed

consistent with expected sensitivity = 2.2×10⁻¹² @90% C.L.

2010 data unblinded on July 5th

Likelihood Fit - 2010 Data

Likelihood Analysis

Likelihood Analysis Results

	BR(fit)	LL 90%	UL 90%
2009	3.2×10 ⁻¹²	1.7×10 ⁻¹³	9.6×10 ⁻¹²
2010	-9.9×10 ⁻¹³		1.7×10 ⁻¹²
2009+2010	-1.5×10 ⁻¹³		2.4×10 ⁻¹²

combined result (2009+2010expected UL = 1.6×10⁻¹²)

- systematic errors (in total 2% in UL) include:
 - relative angle offsets
 - correlations in e⁺ observables
 - normalization

Profile Likelihood Curves

Note these curves are not directly used to derive the U.L. which are obtained in a frequentist approach.

MEG summary

- 2009+2010 data consistent w/ no signal
- New physics is now constrained by 5× tighter upper limit: BR < 2.4×10⁻¹² @90% C.L. (Preprint will be posted at arXiv today)
- MEG is accumulating more data this and next year to reach O(10⁻¹³) sensitivity; So stay tuned!

• Detector improvements/upgrades

Conclusion

- CLFV & EDM experiments are low energy probes for new physics as powerful as LHC
- MEG is now exploring TeV-scale physics; EDM experiments will follow within next few years
- More to come in the next decade