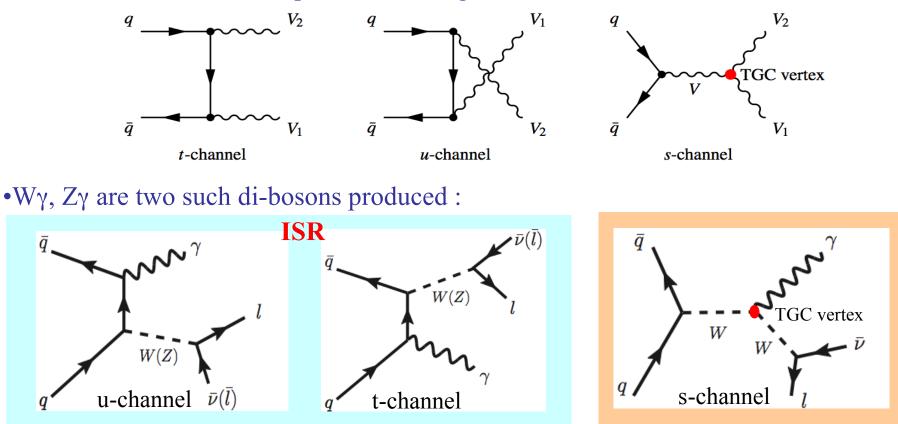
Measurement of Wγ and Zγ Production at ATLAS

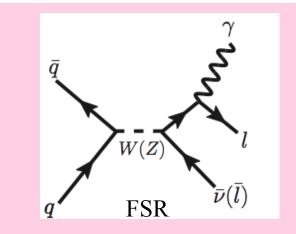
International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alps France July 21st-27th, 2011

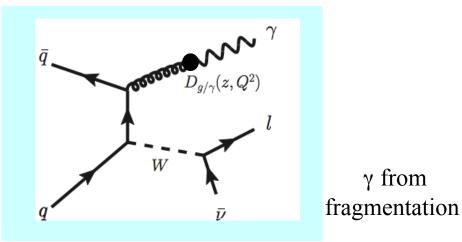

Song-Ming Wang Academia Sinica On behalf of the ATLAS Collaboration

Introduction

• At LHC di-bosons can be produced through :

- Measurement of Wγ and Zγ production provides a direct test of the Triple Gauge Boson Coupling (TGC) of the Electroweak theory
 - $\bullet Measure$ the WW γ vertex in the s-channel
 - •Probing the existence of the ZZ γ and Z $\gamma\gamma$ TGC (forbidden in SM at the tree level)


Definition of Signal

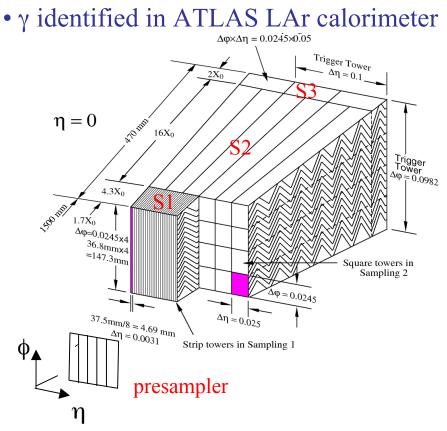

•Measurement of $W\gamma$, $Z\gamma$ in the final state :

•
$$W\gamma : l \lor \gamma + X$$

• $Z\gamma : l^+ l^- \gamma + X$
 $\begin{cases} l : e, \mu \\ \gamma : is isolated \end{cases}$

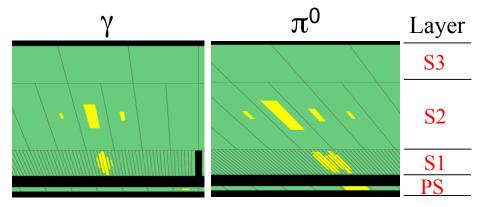
•Final state can include contributions from :

- •Final State Radiation (FSR) γ from inclusive W(Z) production
- •γ from fragmentation in jets produced in association with W or Z boson

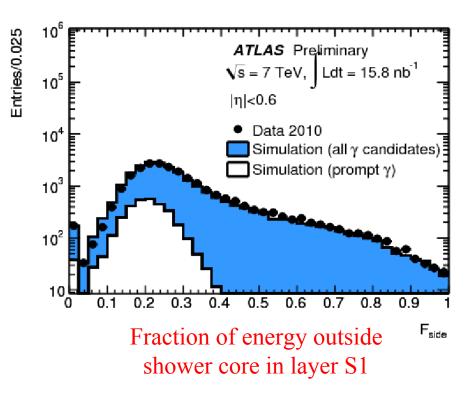


•Phase space of production measurement :

- $dR(l, \gamma) > 0.7$ (to reduce FSR contribution)
- $E_T^{\gamma} > 15 \text{ GeV}$ $M(l^+l^-) > 40 \text{ GeV}$ (for $Z\gamma$)
 - particle level isolation :

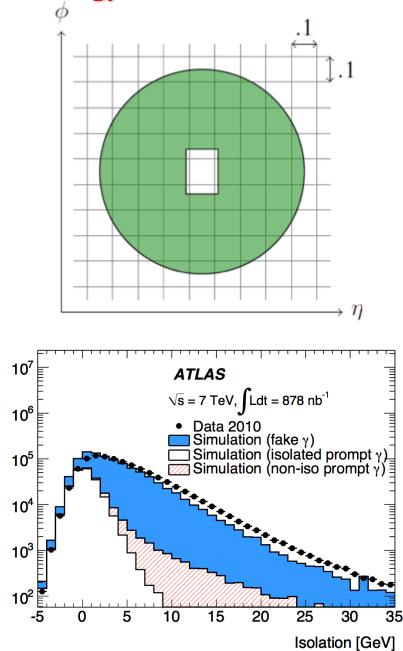

$$\sum_{\Delta R < 0.4} E_T^{had} < 0.5 \times E_T^{\gamma}$$

Photon Identification



γ Reconstruction :

- Narrow energy cluster, allow no/small energy leakage into hadronic calorimeter
- Cut on shower shape variables to discriminate γ from jets and π^0 , η


Fine granularity in S1 for γ/π^0 separation

Photon Isolation Energy

Entries/1 GeV

- Isolation energy is another important quantity to discriminate γ from jet
- Isolation : sum of transverse energy in $\Delta R=0.4$ cone around γ
- Exclude energy from central core
- Correct for:
 - •Leakage from photon energy into isolation cone
 - •Energy deposition from pile-up and underlying event by using "jet-area/median" method (Cacciari, Salam and Sapeta, JHEP 04 (2010) 065) to measure the ambient energy density
- Photon isolation energy different between direct photon and photon from fragmentation
- Isolation not well modeled by simulation

Event Selection

•Measurements performed on data set collected in 2010 (L~35 pb⁻¹) (arXiv:1106.1592)

Wγ	Ζγ		
• One lepton, $p_T(e,\mu)$ >20 GeV	• 2 opposite charged leptons (e ⁺ e ⁻ , μ ⁺ μ ⁻)		
• $ \eta_e < 2.47, \eta_{\mu} < 2.4$	• $p_{T}(e,\mu) > 20 \text{ GeV}$		
• $E_T^{miss} > 25 \text{ GeV}$	• $ \eta_e < 2.47, \eta_{\mu} < 2.4$		
• $M_{T}(l,v)$ >40 GeV	• $M(l^+l^-)>40 \text{ GeV}$		
Photon Selection			
• 1 photon, $E_T^{\gamma} > 15 \text{ GeV}$			
 η_γ <2.37 			
• $dR(e/\mu,\gamma) > 0.7$			
• Isolation : $E_T^{iso} < 5 \text{ GeV}$			

Identification Efficiency:

- e : ~73% (tight), ~90% (medium)
- μ : ~88%
- γ : ~70%

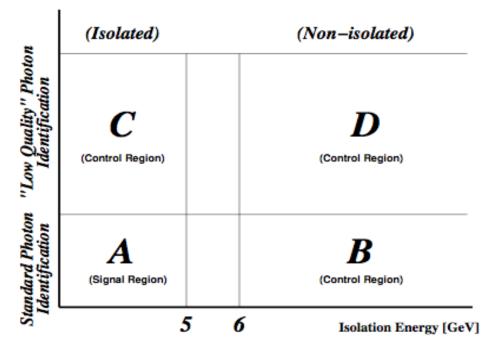
Number of Selected Candidate Events

	e	μ
Wγ	95	97
Ζγ	25	23

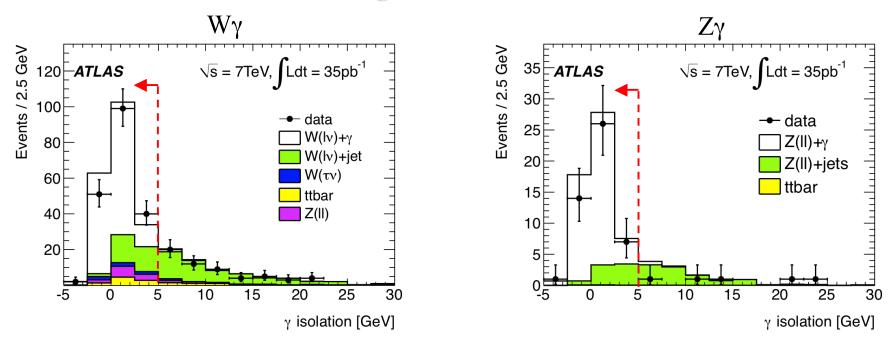
Background Estimation

•Main sources of background:

- $\underline{W}\underline{\gamma}$: W+jets *
 - W→τν
 - Z→*ll*
 - ttbar
 - negligible contribution from QCD multi-jet, WW, single-top
- For Wγ, estimate W+jets background from data control regions
- •Assume photon identification (ID) cuts not strongly correlated to photon isolation for W+jets


$$N_A^{W+jets} = N_B \cdot \frac{N_C}{N_D}$$

(Contributions from non-W+jets backgrounds and signal leakage in control regions B,C and D are removed)

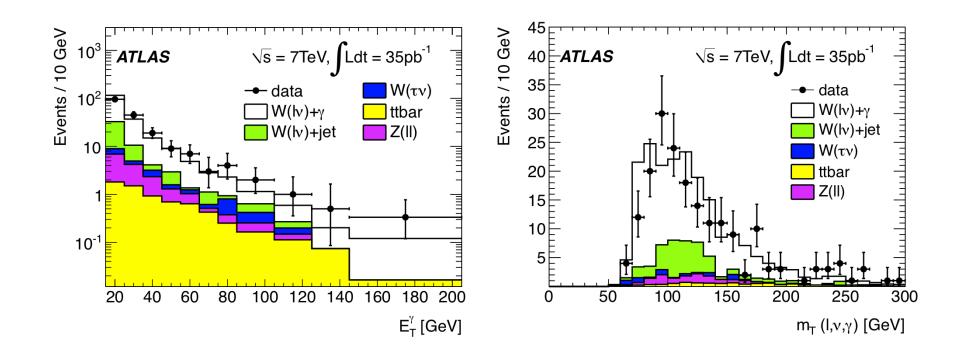

$$\underline{Z}\underline{\gamma}$$
: • Z+jets *

- Ζ→ττ
- ttbar

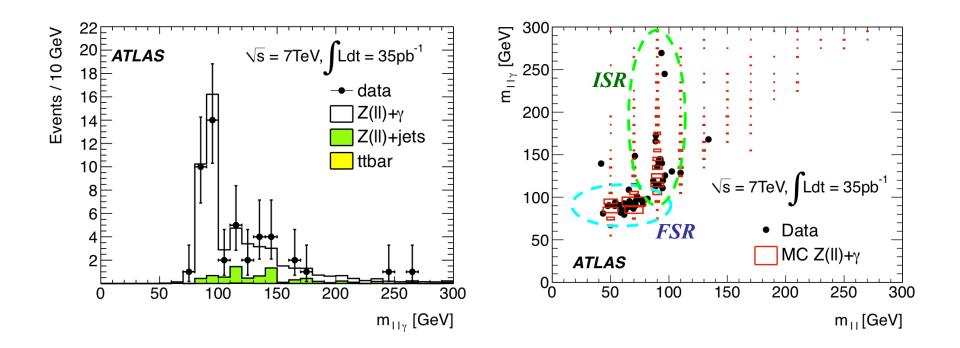
*: most dominate source jet fakes as photon.

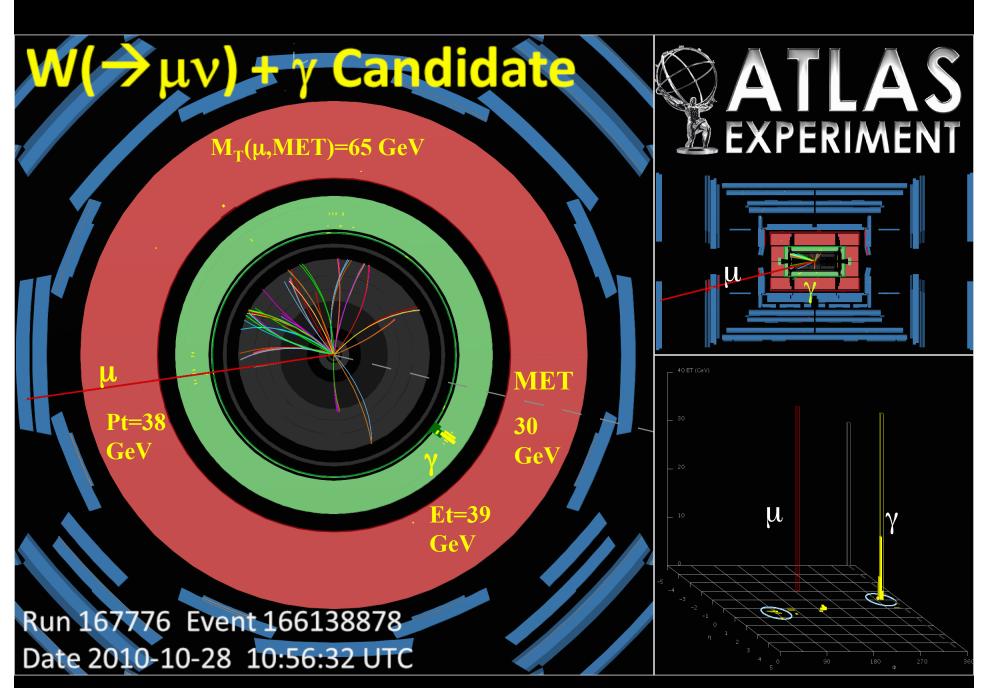
Background Estimation

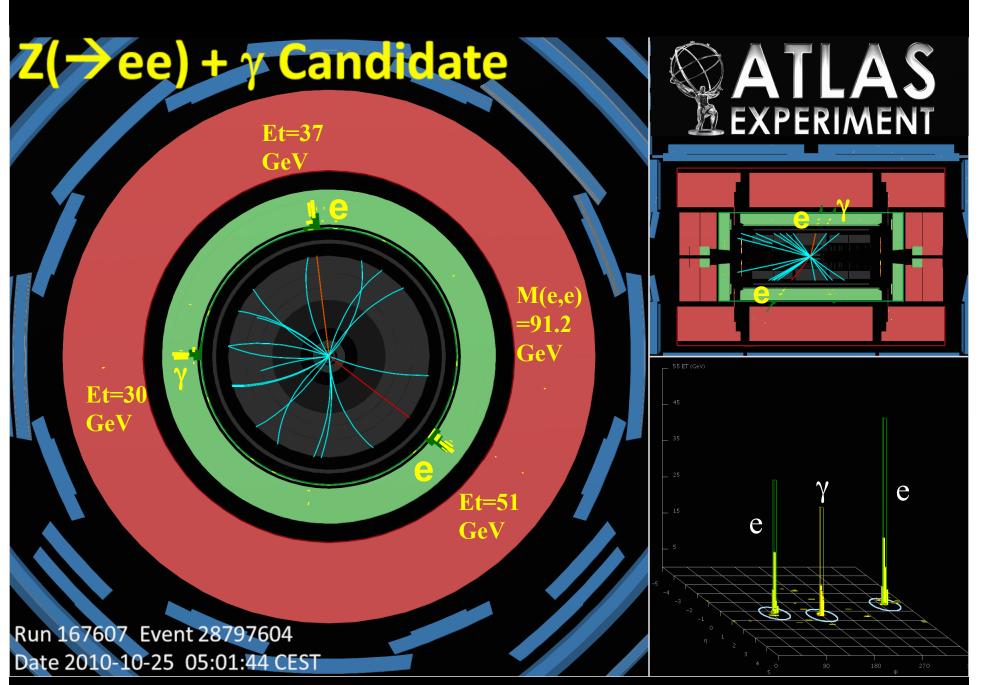
- W+jets background (green) isolation shape is taken from data's "low-quality" ID control region
- Since low statistics in Zγ events, estimate Z+jets background based on simulation (assign large systematic uncertainty)


Signal Yield

Process	Observed	${ m EW}{+}tar{t}$	W+jets	Extracted	
	events	background	background	signal	
$N_{obs}(W\gamma ightarrow e^{\pm} \nu \gamma)$	95	$10.3\pm0.9\pm0.7$	$16.9\pm5.3\pm7.3$	$67.8 \pm 9.2 \pm 7.3$	
$N_{obs}(W\gamma ightarrow \mu^{\pm} \nu \gamma)$	97	$11.9\pm0.8\pm0.8$	$16.9\pm5.3\pm7.4$	$68.2\pm9.3\pm7.4$	
Process	Observed	$EW+t\bar{t}$		Extracted	
	events	background		signal	
$N_{obs}(Z\gamma ightarrow e^+e^-\gamma)$	25	3.7 ± 3.7		$21.3 \pm 5.8 \pm 3.7$	
$N_{obs}(Z\gamma ightarrow \mu^+\mu^-\gamma)$	23	3.3 ± 3.3		$19.7\pm4.8\pm3.3$	


Systematic Uncertainties on Extracted Signal:


- •Stability of control regions using shower shape : $\sim 9\%$
- •Stability of control regions using isolation : ~4%
- •Modeling of signal leakage : ~3%
- •Background correlation in control regions : $\sim 3\%$


Kinematic Distributions of Selected Events (Wy)

Kinematic Distributions of Selected Events (Zy)

Cross Section Measurements

Fiducial Cross Section:

•Performed in the phase space defined by kinematic cuts in event selection

$$\sigma_{W\gamma(Z\gamma)}^{fid} = \frac{N_{W\gamma(Z\gamma)}^{Sig}}{C_{W\gamma(Z\gamma)} \cdot L_{W\gamma(Z\gamma)}}$$

 $N_{W\gamma(Z\gamma)}^{Sig}$: Number of measured signal events $C_{W\gamma(Z\gamma)}$: Reconstruction and identification efficiency

Production Cross Section:

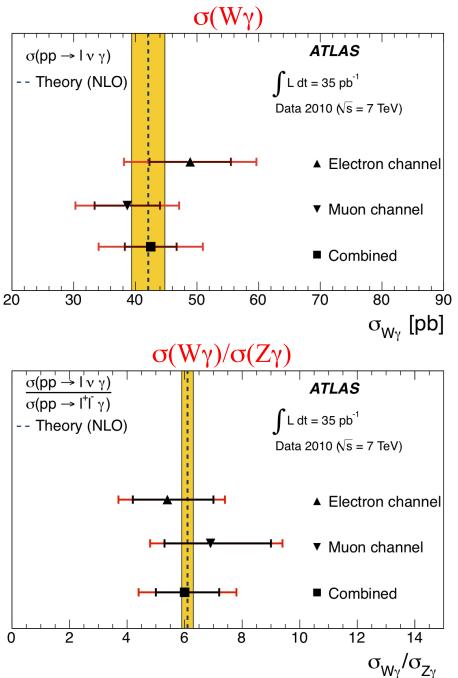
• Extrapolate the measurement in fiducial phase space to full decay phase space of W and Z boson σ^{fig}

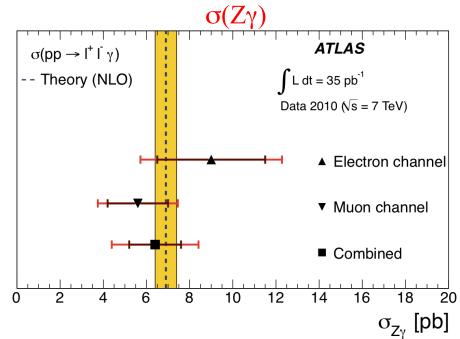
$$\sigma_{W\gamma(Z\gamma)}^{prod} = \frac{\sigma_{W\gamma(Z\gamma)}^{\mu g}}{A_{W\gamma(Z\gamma)}}$$

 $A_{W\gamma(Z\gamma)}$: Acceptance of fiducial phase space with respect to total production phase space

• Use full simulation to calculate acceptance $A_{W\gamma(Z\gamma)}$

Uncertainties

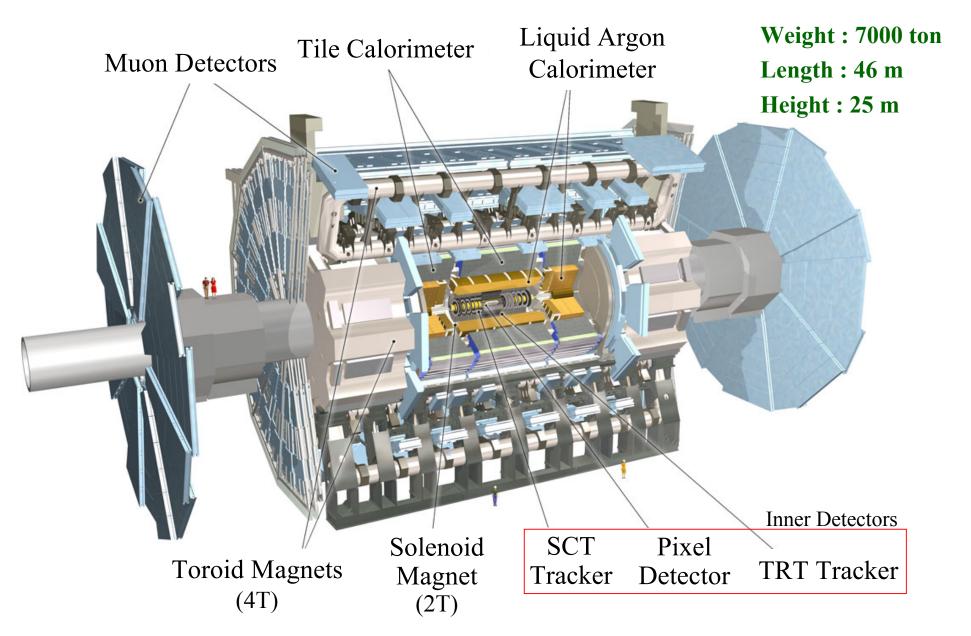

- Total uncertainties : $\sim 12\%$ (13%) for muon (electron) channel
- Dominant Uncertainties :
 - Photon reconstruction/ID efficiency : $\sim 10\%$ (uncertainty in upstream material and contribution from fragmentation photon)
 - •Electron reconstruction/ID : ~4.5%
 - •Electromagnetic energy scale and resolution : \sim 3 4.5%
 - •Others (trigger, muon ID, photon isolation...) : $\sim 1 2\%$


Cross Section

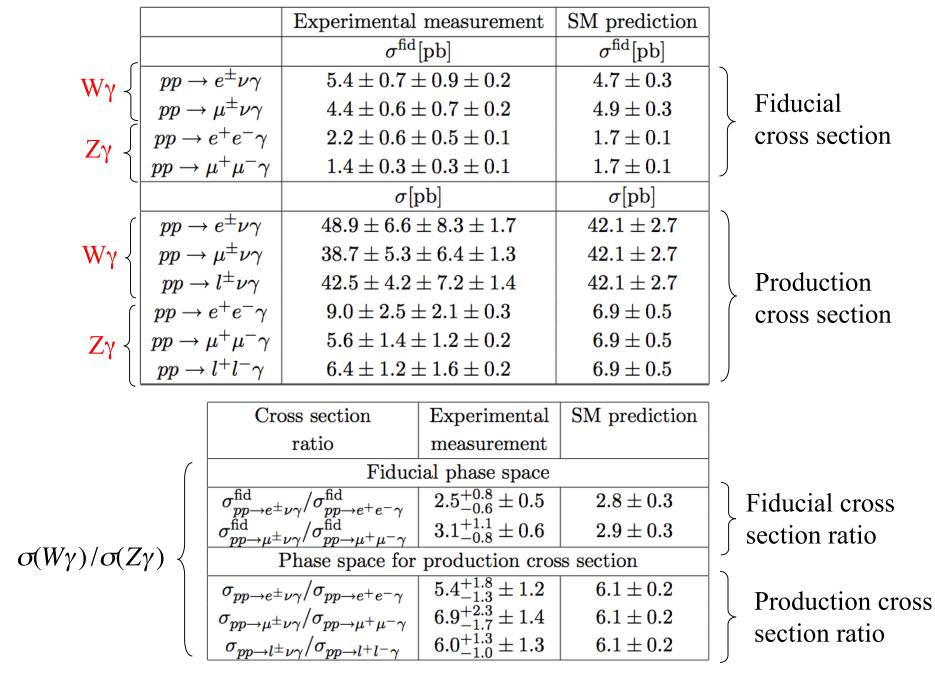
		Experimental measurement	SM prediction	
		$\sigma^{ m fid}[m pb]$	$\sigma^{ m fid}[m pb]$	
Wγ {	$pp ightarrow e^{\pm} u \gamma$ $pp ightarrow \mu^{\pm} u \gamma$	$5.4 \pm 0.7 \pm 0.9 \pm 0.2$	4.7 ± 0.3	
•••	$pp ightarrow \mu^{\pm} u \gamma$	$4.4 \pm 0.6 \pm 0.7 \pm 0.2$	4.9 ± 0.3	Fiducial
Ζγ {	$pp ightarrow e^+ e^- \gamma$	$2.2 \pm 0.6 \pm 0.5 \pm 0.1$	1.7 ± 0.1	cross section
~	$pp ightarrow e^+ e^- \gamma \ pp ightarrow \mu^+ \mu^- \gamma$	$1.4 \pm 0.3 \pm 0.3 \pm 0.1$	1.7 ± 0.1	
		$\sigma [{ m pb}]$	$\sigma [{ m pb}]$	
	$pp ightarrow e^{\pm} u \gamma$	$48.9 \pm 6.6 \pm 8.3 \pm 1.7$	42.1 ± 2.7)
$W\gamma$	$pp ightarrow \mu^{\pm} u \gamma$	$38.7 \pm 5.3 \pm 6.4 \pm 1.3$	42.1 ± 2.7	
l	$pp ightarrow l^{\pm} u \gamma$	$42.5 \pm 4.2 \pm 7.2 \pm 1.4$	42.1 ± 2.7	Production
ſ	$pp ightarrow e^+ e^- \gamma$	$9.0 \pm 2.5 \pm 2.1 \pm 0.3$	6.9 ± 0.5	cross section
$Z\gamma$	$egin{array}{c} pp ightarrow \mu^+ \mu^- \gamma \ pp ightarrow l^+ l^- \gamma \end{array}$	$5.6 \pm 1.4 \pm 1.2 \pm 0.2$	6.9 ± 0.5	
l	$pp \rightarrow l^+ l^- \gamma$	$6.4 \pm 1.2 \pm 1.6 \pm 0.2$	6.9 ± 0.5	J

(stat) (syst) (lumi)

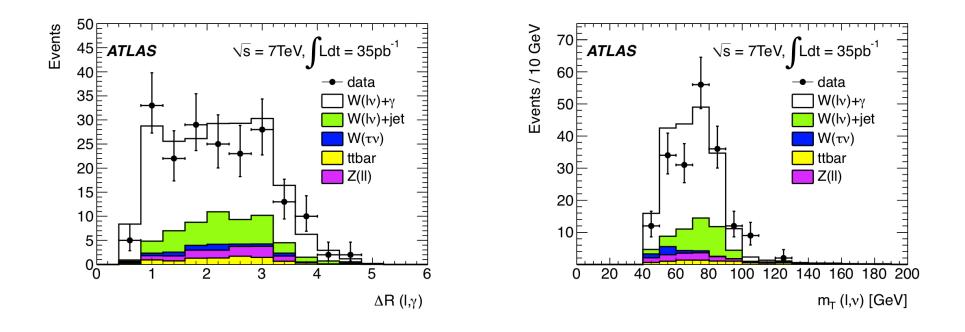
Production Cross Section


• All measurements are consistent within their uncertainties with the SM expectation

Summary


- Have performed the first measurement of Wy, Zy production at $\sqrt{s}=7$ TeV with the ATLAS detector, using data sample of 35 pb⁻¹ (arXiv:1106.1592, submitted to JHEP)
- Experimental measurements are consistent with Standard Model expectation within their uncertainties
- Dominant uncertainty is due to photon identification efficiency
- Expect to improve the precision of measurement with larger data sample available this year
- Extend analysis to search for new physics and to measure the anomalous TGC limits.

BACK UP


ATLAS Experiment

Cross Section

Kinematic Distributions of Selected Events (Wy)

Uncertainties

Electron Channel			Muon Channel		
Parameter	$\frac{\delta C_{W\gamma}}{C_{W\gamma}}$	$rac{\delta C_{Z\gamma}}{C_{Z\gamma}}$	Parameter	$rac{\delta C_{W\gamma}}{C_{W\gamma}}$	$rac{\delta C_{Z\gamma}}{C_{Z\gamma}}$
Channel	$e^{\pm} u\gamma$	$e^+e^-\gamma$	Channel	$\mu^{\pm} u\gamma$	$\mu^+\mu^-\gamma$
Trigger efficiency	1%	0.02%	Trigger efficiency	0.6%	0.2%
Electron efficiency	4.5%	4.5%	Muon efficiency	0.5%	1%
Photon efficiency	10.1%	10.1%	Muon isolation efficiency	1%	2%
EM scale and resolution	3%	4.5%	Momentum scale and resolution	0.3%	0.5%
$E_{\rm T}^{\rm miss}$ scale and resolution	2%	-	Photon efficiency	10.1%	10.1%
Inoperative readout modeling	1.4%	2.1%	EM scale and resolution	4%	3%
Photon simulation modeling	0.3%	0.3%	$E_{\mathrm{T}}^{\mathrm{miss}}$ scale and resolution	2%	-
Photon isolation efficiency	3.3%	3.3%	Inoperative readout modeling	0.7%	0.7%
Total uncertainty	12.1%	12.5%	Photon simulation modeling	0.3%	0.3%
	1		Photon isolation efficiency	3.3%	3.3%
			Total uncertainty	11.6%	11.2%

Dominant Uncertainties :

- Photon reconstruction/ID efficiency : $\sim 10\%$ (uncertainty in upstream material and contribution from fragmentation photon)
- Electron reconstruction/ID : ~4.5%
- Electromagnetic energy scale and resolution : \sim 3 4.5%

	Central	Statistical	Systematic	Luminosity			
	value	uncertainty	uncertainty	uncertainty			
		$pp ightarrow e^{\pm} u \gamma$					
$N_{W\gamma}^{ m sig}$	67.8	9.2	7.3	-			
$L_{W\gamma}[{ m pb}^{-1}]$	35.1	-	-	1.2			
$C_{W\gamma}$	0.359	0.010	0.043	-			
$A_{W\gamma}$	0.110	0.001	0.005	-			
	$pp ightarrow e^+e^-\gamma$						
$N_{Z\gamma}^{ m sig}$	21.3	5.8	3.7	-			
$L_{Z\gamma}[{ m pb}^{-1}]$	35.1	-	-	1.2			
$C_{Z\gamma}$	0.280	0.010	0.035	-			
$A_{Z\gamma}$	0.240	0.002	0.016	-			
		$pp ightarrow \mu^{\pm} u \gamma$					
$N_{W\gamma}^{ m sig}$	68.2	9.3	7.4	-			
$L_{W\gamma}[{ m pb}^{-1}]$	33.9	-	-	1.2			
$C_{W\gamma}$	0.455	0.010	0.053	-			
$A_{W\gamma}$	0.114	0.001	0.005	-			
	$pp ightarrow \mu^+ \mu^- \gamma$						
$N_{Z\gamma}^{ m sig}$	19.7	4.8	3.3	-			
$L_{Z\gamma}[{ m pb}^{-1}]$	33.9	-	-	1.2			
$C_{Z\gamma}$	0.429	0.010	0.048	-			
$A_{Z\gamma}$	0.242	0.002	0.016	-			

Table for Cross Section Calculation

Table 6. Summary of input quantities for the calculation of the $W\gamma$ and $Z\gamma$ fiducial and production cross sections. For each channel, the observed numbers of signal events after background subtraction, the correction factors $C_{W\gamma(Z\gamma)}$, the acceptance factors $A_{W\gamma(Z\gamma)}$ (see Section 8.2), and the integrated luminosities are given, with their statistical, systematic, and luminosity uncertainties. For $C_{W\gamma(Z\gamma)}$ and $A_{W\gamma(Z\gamma)}$, the statistical uncertainty reflects the limited statistic of the signal MC samples.