

Higgs bosons of R-symmetric supersymmetric theories

Jan Kalinowski University of Warsaw

S.Y. Choi, D. Choudhury, A. Freitas, JK, P.M. Zerwas, Phys.Lett. B697 (2011) 215-221

Outline

- Motivation
- Supersymmetry
- R-symmetry
- Structure of the Minimal R-symmetric Supersymmetric
 Standard Model
- Expectations at the LHC
 - production and decay modes
- Summary

Motivation

Very successful 2010-11 LHC runs with plenty of data

The biggest question: the nature of the electroweak symmetry breaking

In the SM: Higgs mechanism

Higgs particle – the only missing piece of the SM

Although very successful, the SM is not the ultimate theory

- the Higgs sector unnatural
- matter-antimatter asymmetry
- dark matter/energy

Hints for new physics at a TeV scale

Supersymmetry – the most elegant and respected proposition for the beyond SM physics In the simplest realisation each SM particle is paired with a sparticle that differs in spin by $\frac{1}{2}$:

- fermions sfermions
- gauge bosons gauginos
- Higgses higgsinos

→ gluinos and neutralinos are Majorana fermions – must be checked exp.

Minimal SUSY under pressure:

- ♦ dim-4 B- and L-violating operators \rightarrow extra symmetry (e.g. R-parity)
- ✤ possible flavor and CP problem due to misalignement between soft parameters and CKM → strong constraints on the parameter space
- little fine tuning

Continuous R-symmetry can ameliorate the above problems by removing

- soft tri-linear scalar couplings
- mu-term
- Majorana gaugino masses
- dim-4 B- and L-violating terms as well as dim-5 mediating proton decay

Supersymmetry

Supersymmetry: superspace $\{x^{\mu}, \theta, \bar{\theta}\}$ superfields matter and Higgs – chiral $\hat{\Phi}(x^{\mu}, \theta) = \{\varphi, \psi^{\alpha}\}$ gauge fields – vector $\hat{G}(x^{\mu}, \theta, \bar{\theta}) = \{\tilde{G}^{\alpha}, G^{\mu}\}$

Lagrangian

• kinetic terms
$$\int d^2\theta \, d^2\bar{\theta} \, \hat{\Phi}^{\dagger} \, e^{-2g\hat{G}}\hat{\Phi} + (\int d^2\theta \, \hat{G}^{\alpha}\hat{G}_{\alpha} + h.c.)$$

where $\hat{G}^{\alpha} \sim \bar{D}^2 D^{\alpha} \hat{G}$ field-strength superfield

♦ potential $\int d^2 \theta W$ where superpotential $W \sim \mu \hat{H}_d \hat{H}_u + y_d \hat{H}_d \hat{Q} \hat{D}^c + \dots$

soft-SUSY breaking: tri-linear scalar couplings and soft masses

J. Kalinowski

R-symmetry

R-symmetry – a continuous U(1) global symmetry under $\theta \rightarrow e^{i\alpha}\theta$ [Fayet, Salam & Strathdee, ...]

 $\begin{array}{ll} \mbox{Grassmann coordinates have non-trivial R-charge} \\ R(\theta) = +1, & R(d\theta) = -1, & R(\bar{\theta}) = -1, & R(d\bar{\theta}) = +1 \\ \mbox{superfields} & \hat{X}_i(x^\mu, \theta, \bar{\theta}) \rightarrow e^{i\xi_i\alpha} \, \hat{X}_i(x^\mu, e^{i\alpha}\theta, e^{-i\alpha}\bar{\theta}) \\ \mbox{component fields have different R-charge} \\ \mbox{gauge} & R(\hat{G}) = 0 & \Rightarrow R(G^\mu) = 0, & R(\tilde{G}^\alpha) = +1 \\ \mbox{kinetic terms are automatically R-symmetric} \\ \end{array}$

chiral

- matter $R(\hat{q}) = +1 \implies R(\tilde{q}) = +1, \quad R(q) = 0$
- $\label{eq:Higgs} \operatorname{Higgs} \quad R(\hat{H}) = 0 \qquad \Rightarrow R(H) = 0, \quad R(\tilde{H}) = +1$

J. Kalinowski

R-symmetry

terms allowed:

Yukawa $y_d \hat{H}_d \hat{Q} \hat{D}^c$ scalar masses $M_{\tilde{q}}^2 |\tilde{q}|^2$

terms forbidden

mu-term $\mu \hat{H}_d \hat{H}_u$ L- and B-violation $\hat{L}\hat{Q}\hat{D}^c$ tri-linear scalar couplings $A \tilde{H}_d \tilde{Q} \tilde{D}^c$ Majorana gaugino masses $M_{\tilde{G}} \tilde{G}^{\alpha} \tilde{G}_{\alpha}$

Minimal R-symmetric SSM

The field content of MRSSM: fields of the MSSM with addition of

chiral superfields in the adjoint rep. of the corresponding gauge group

$$= \{\sigma, G'^{\alpha}\}$$
$$R(\hat{\Sigma}) = 0 \qquad \Rightarrow R(\sigma) = 0, \quad R(\tilde{G}'^{\alpha}) = -1$$

to build a Dirac gaugino mass

 $\hat{\Sigma}$

 $M^D \tilde{G}^{\alpha} \, \tilde{G}'_{\alpha}$

Dirac gauginos → important consequences for colliders [Nojiri ea, Choi ea, …] dark matter [Belanger ea, Hsieh, Chun ea, …] flavour [Kribbs ea, Benakli ea, Fox ea, …] scalar adjoints (e.q. sgluons) [Plehn ea, Han ea, …]

> two chiral iso-dublets \hat{R}_u, \hat{R}_d with R-charge 2

to build a mu-type term $\mu_d \hat{H}_d \hat{H}_d$

 $\mu_d \hat{H}_d \hat{R}_d + \mu_u \hat{H}_u \hat{R}_u$

and in addition $\lambda_d^i \hat{H}_d \hat{\Sigma}^i \hat{R}_d + \lambda_u^i \hat{H}_u \hat{\Sigma}^i \hat{R}_u, \qquad i = I, Y$

➔ R-Higgs bosons

[for alternative formulation see Davies, March-Russell, McCullough]

MRSSM

R-charges of the superfields and their component fields

Field	Superfield		Boson		Fermion	
Matter	$\hat{Q}, \hat{D}^{c}, \hat{U}^{c}$	+1	$\tilde{Q}, \tilde{D}^c, \tilde{U}^c$	+1	Q, D^c, U^c	0
Higgs	$\hat{H}_{d,u}$	0	$H_{d,u}$	0	$ ilde{H}_{d,u}$	-1
	$\hat{R}_{d,u}$	+2	$R_{d,u}$	+2	$\tilde{R}_{d,u}$	+1
Gauge Vector	\hat{G}	0	G_{μ}	0	$ ilde{G}$	+1
Gauge Chiral	$\hat{\Sigma}$	0	σ	0	$ ilde{G}'$	-1

Physical fields: matter, gauge and Higgs fields as in the MSSM Dirac gluinos and neutralinos additional pair of charginos gauge-adjoint scalars (e.g. sgluons) R-Higgs bosons

Higgs sector

Higgs potential

(assuming EW scalar adjoints heavy)

$$\begin{split} \mathcal{V}_{HR}^{0} &= (m_{H_{d}}^{2} + \mu_{d}^{2}) |H_{d}^{0}|^{2} + (m_{H_{u}}^{2} + \mu_{u}^{2}) |H_{u}^{0}|^{2} - (B_{\mu} H_{d}^{0} H_{u}^{0} + \text{h.c.}) \\ &+ (m_{R_{d}}^{2} + \mu_{d}^{2}) |R_{d}^{0}|^{2} + (m_{R_{u}}^{2} + \mu_{u}^{2}) |R_{u}^{0}|^{2} \\ &+ \left|\lambda_{d}^{I} H_{d}^{0} R_{d}^{0} + \lambda_{u}^{I} H_{u}^{0} R_{u}^{0}\right|^{2} + \left|\lambda_{d}^{Y} H_{d}^{0} R_{d}^{0} - \lambda_{u}^{Y} H_{u}^{0} R_{u}^{0}\right|^{2} \\ &+ \frac{1}{8} (g^{2} + g'^{2}) \left(|H_{d}^{0}|^{2} - |H_{u}^{0}|^{2} - |R_{d}^{0}|^{2} + |R_{u}^{0}|^{2} \right)^{2} \,. \end{split}$$

Important consequences (even if EW scalars present):

- R-Higgses do not develop vev's
- > H-Higgses and R-Higgses do not mix

R-Higgses masses

 (R_d^0, R_u^0) basis

$$\mathcal{M}_{R^{0}}^{2} = \begin{bmatrix} m_{R_{d}}^{2} + \mu_{d}^{2} + \frac{1}{2} \left(\lambda_{d}^{I}^{2} + \lambda_{d}^{Y2}\right) v_{d}^{2} - \frac{1}{8}g_{Z}^{2}(v_{d}^{2} - v_{u}^{2}) & \frac{1}{2} (\lambda_{d}^{I}\lambda_{u}^{I} - \lambda_{d}^{Y}\lambda_{u}^{Y}) v_{d}v_{u} \\ \frac{1}{2} (\lambda_{d}^{I}\lambda_{u}^{I} - \lambda_{d}^{Y}\lambda_{u}^{Y}) v_{d}v_{u} & m_{R_{u}}^{2} + \mu_{u}^{2} + \frac{1}{2} \left(\lambda_{u}^{I2} + \lambda_{u}^{Y2}\right) v_{u}^{2} + \frac{1}{8}g_{Z}^{2}(v_{d}^{2} - v_{u}^{2}) \end{bmatrix} \\ \mathcal{M}_{R^{\pm}}^{2} = \begin{bmatrix} m_{R_{d}}^{2} + \mu_{d}^{2} + \lambda_{d}^{I2}v_{d}^{2} - \frac{1}{8}g_{Z}^{2}(v_{d}^{2} - v_{u}^{2}) & 0 \\ 0 & m_{R_{u}}^{2} + \mu_{u}^{2} + \lambda_{u}^{I2}v_{u}^{2} + \frac{1}{8}g_{Z}^{2}(v_{d}^{2} - v_{u}^{2}) \end{bmatrix} & (R_{d}^{\pm}, R_{u}^{\pm}) \text{ basis} \\ \int_{0}^{0} \int_{0}^$$

R-Higgses - couplings

Conserved R-charge restricts couplings of R-Higgs bosons

allowed: $R\tilde{\ell}\tilde{\ell}, R\tilde{q}\tilde{q}, R\tilde{\chi}\tilde{\chi}, RRH, RRV$

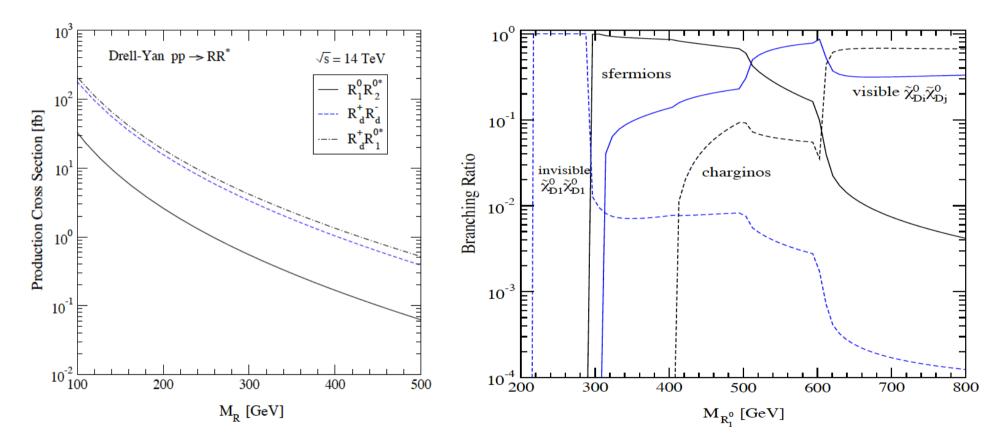
vanishing: Rff, RVV, RHH (NB. adjoints scalars have R=0)

Decay modes: only to pairs of sparticles

$$\Gamma[R \to \tilde{f}_L \tilde{f}_R'^*] = \frac{\lambda^{1/2} \,\tilde{\alpha}_{Rff'}^2}{16\pi M_R}$$

$$\Gamma[R \to \tilde{\chi}_{Dj} \tilde{\chi}_{Dk}] = \frac{\lambda^{1/2}}{8\pi M_R} \left\{ \alpha_{Rjk}^2 [M_R^2 - (m_j + m_k)^2] + \alpha_{Rjk}'^2 [M_R^2 - (m_j - m_k)^2] \right\}$$

Production channels: only in pairs via Drell-Yan


$$\sigma[pp \to RR^*] = \sum_{q\bar{q}} \left\langle \frac{\pi\lambda^{3/2}}{9s} \left| \sum_{V} \alpha_{RRV} \frac{s}{s - m_V^2} \alpha_{qqV} \right|^2 \right\rangle_{q\bar{q}}$$

J. Kalinowski

Expectations at the LHC

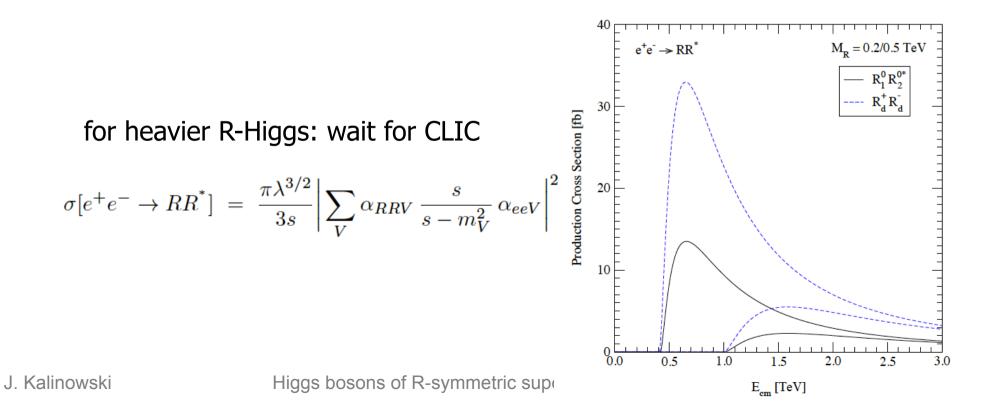
Production:

Branching ratios:

other parameters as in the SPS1a' scenario (with Dirac gauginos)

Expectations at the LHC

Other production channels:


cascade decays: $\tilde{q} \to q \tilde{\chi}_n \to q \tilde{\chi}_1 R$ gamma fusion $pp \to \gamma \gamma \to R R^*$

Expectations at the LHC

Other production channels:

cascade decays: $\tilde{q} \to q \tilde{\chi}_n \to q \tilde{\chi}_1 R$

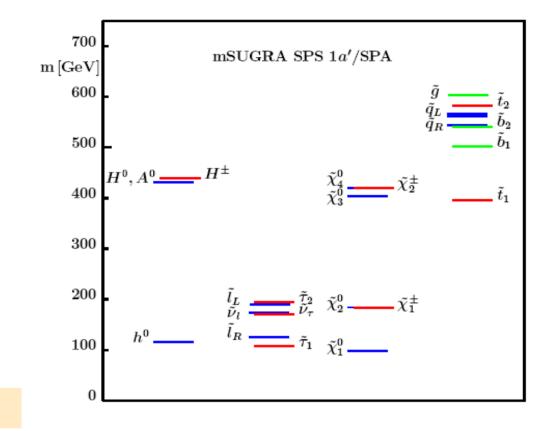
gamma fusion $pp \rightarrow \gamma \gamma \rightarrow RR^*$

Summary

- Well motivated R-symmetric SUSY model discussed
- Ameliorates MSSM flavour and CP problems
- Gauginos become Dirac particles
- R-scalars expand significantly the scalar sector
- Conserved R-charge restricts production channels and decay modes
- Other sectors (colored, -inos) not discussed here

distinct phenomenology at colliders consequences for DM relic abundance

soft masses


$$\begin{split} & \mathsf{B}_{\mathsf{mu}}\text{-}\mathsf{term} \qquad \int d^2\theta d^2\bar{\theta} \ \frac{X^{\dagger}X}{M^2} \ \hat{H}_u \hat{H}_d \quad \to B_{\mu} H_u H_d \\ & \text{scalar masses for R-Higgses} \qquad \int d^2\theta d^2\bar{\theta} \ \frac{X^{\dagger}X}{M^2} \ \hat{R}_u^{\dagger} \hat{R}_d \quad \to M_{R_d}^2 (|R_d^+|^2 + |R_d^0|^2) \\ & \text{scalar masses for sigma fields} \qquad \int d^2\theta d^2 \ \frac{\hat{W}^{\alpha}\hat{W}_{\alpha}}{M^2} \ \mathrm{Tr}\hat{\Sigma}^2 \quad \to \mathrm{M}_{\sigma}^2(\sigma^2 + \sigma^{*2}) \\ & \mathsf{Dirac gaugino masses} \qquad \int d^2\theta d^2 \ \frac{\hat{W}^{\alpha}}{M} \ \hat{G}_{\alpha}\hat{\Sigma} \quad \to M^D \tilde{G}\tilde{G}' \end{split}$$

when hidden sector spurion fields develop vevs

$$\langle X \rangle = \theta^2 F \langle \hat{W}^{\alpha} \rangle = \theta^{\alpha} D$$

J. Kalinowski

SPS1a' scenario

m_0	$70{ m GeV}$
$m_{1/2}$	$250{ m GeV}$
A_0	$-300~{ m GeV}$
aneta	10
$\mathrm{sign}\ \mu$	+

J. Kalinowski